# Appendix 13.1A

Arklow SI Causeway 2017



INTERIM REPORT

# **Arklow Sewerage Scheme - Site Investigation**

Primary Author: Andrew Garne

Client: Irish Water

Client's Representative: Arup Byrne Looby

Completed: November 2016

Report No.: 16-5027-0

File Location: 16-5027/ Report



### **CONTENTS**

### **Document Control Sheet**

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

| 1 | AUTI | 10RITY                                                    | . 4 |
|---|------|-----------------------------------------------------------|-----|
| 2 | SCOF | E                                                         | . 4 |
| 3 | DESC | RIPTION OF SITE                                           | . 4 |
| 4 | SITE | OPERATIONS                                                | 5   |
|   | 4.1  | Boreholes                                                 | . 5 |
|   | 4.2  | Standpipe installations                                   | . 5 |
| 5 | LAB( | ORATORY WORKGeotechnical laboratory testing of soils      | . 6 |
|   | 5.1  | Geotechnical laboratory testing of soils                  | . 6 |
|   | 5.2  | Environmental laboratory testing of soils                 | . 6 |
| 6 | GRO  | JND CONDITIONSGeneral geology of the area                 | . 6 |
|   | 6.1  | General geology of the area                               | . 6 |
|   | 6.2  | Ground types encountered during investigation of the site | . 6 |
|   | 6.3  | Groundwater                                               | . 7 |
| 7 | REEE | RENCES                                                    | 7   |

#### **APPENDICES**

Appendix A Borehole Logs

Appendix B Geotechnical Laboratory Test Results

Appendix C Environmental Laboratory Test Results

November 2016





#### **Document Control Sheet**

Report No.: 16-5027

Project title: Arklow Sewerage Scheme

Client: Irish Water

Client's Representative: Arup Byrne Looby

| Revision | Status  | Report prepared by: | Report reviewed by: | Report approved by:               | Issue date                        |
|----------|---------|---------------------|---------------------|-----------------------------------|-----------------------------------|
| 0        | Interim | Andrew Garne        |                     | Paul Dunlop<br>BEng PhD CEng MIEI | 17 <sup>th</sup> November<br>2016 |

The works were conducted in accordance with:

UK Specification for Ground Investigation 2<sup>nd</sup> Edition, published by ICE Publishing (2012)

British Standards Institute (2010) BS 5930:1999 + A2: 2010, Code of practice for site investigations. Incorporating Amendment Nos. 1 and 2, as partially replaced by:

- BS EN 1997-2:2007: Eurocode 7. Geotechnical design. Ground investigation and testing
- BS EN ISO 22475-1:2006: Geotechnical investigation and testing. Sampling methods and groundwater measurements. Technical principles for execution
- BS EN ISO 14688-1:2002/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Identification and description
- BS EN ISO 14688-2:2004/Amd 1:2013: Geotechnical investigation and testing. Identification and classification of soil. Principles for a classification
- BS EN ISO 14689-1:2003: Geotechnical investigation and testing. Identification and classification of rock. Identification and description
- BS EN ISO 22476-2:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Dynamic probing
- BS EN ISO 22476-3:2005/Amd 1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test





#### METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in Section 6 of BS 5930: 1999 + A2: 2010, The Code of Practice for Site Investigation. The amendments revised the Standard to remove text superseded by BS EN ISO 14688-1:2002, BS EN ISO 14689-1:2003 and refers to the relevant standard for each affected subclause. However, the following terms are used in the description of fine-grained soils, where applicable:

- soft to firm: fine-grained soil with consistency description close to the boundary between soft and firm soil (Table 13 of BS5930).
- firm to stiff: fine-grained soil with consistency description close to the boundary between firm and stiff soil (Table 13 of BS5930).

| Abbreviations used             | on exploratory hole logs                                                                                                                                                                                                                                    |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U                              | Nominal 100mm diameter undisturbed open tube sample                                                                                                                                                                                                         |
| P                              | Nominal 100mm diameter undisturbed piston sample                                                                                                                                                                                                            |
| В                              | Bulk disturbed sample                                                                                                                                                                                                                                       |
| D                              | Small disturbed sample                                                                                                                                                                                                                                      |
| W                              | Water sample                                                                                                                                                                                                                                                |
| ES / EW                        | Soil sample for environmental testing / Water sample for environmental testing                                                                                                                                                                              |
| SPT                            | Standard penetration test using a split spoon sampler (small disturbed sample obtained)                                                                                                                                                                     |
| SPT (C)                        | Standard penetration test using 60 degree solid cone                                                                                                                                                                                                        |
| x,x/x,x,x,x                    | Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.                                                                      |
|                                | The length achieved is stated (mm) for any test increment less than 75mm                                                                                                                                                                                    |
| N=X                            | SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)                                                                                                                                                   |
| N=X/Z                          | Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (mm)                                                                                                |
| V<br>VR                        | Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V: undisturbed vane shear strength VR: remoulded vane shear strength                                                                                                     |
| dd/mm/yy: 1.0<br>dd/mm/yy: dry | Date & water level at the borehole depth at the end of shift and the start of the following shift                                                                                                                                                           |
| Abbreviations relati           | ng to rock core – reference Clause 44.4.4 of BS 5930: 1999                                                                                                                                                                                                  |
| TCR (%)                        | Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.                                                                                                                                         |
| SCR (%)                        | Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures. |
| RQD (%)                        | Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.                                                                                                                                    |
| FI                             | Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.                                                                                                                            |
| NI                             | Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.                                                                                                                                     |
| AZCL                           | Assessed zone of core loss: The estimated depth range where core was not recovered.                                                                                                                                                                         |
| DIF                            | Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.                                                                                                                                                            |



### **Arklow Sewerage Scheme**

#### 1 **AUTHORITY**

On the instructions of Consulting Engineers, Arup Byrne Looby ("the Client's Representative"), acting on the behalf of Irish Water ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the design and construction of a proposed sewerage scheme.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

#### 2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, soil sampling, in-situ and laboratory testing, and the preparation of a factual report on the findings.

#### 3 DESCRIPTION OF SITE

The works were conducted close to the Arklow Marina, between Mill Road and North Quay which lie close to the harbour, on the east side of Arklow Town.

The existing site is presented on the exploratory hole location plans provided by Arup Byrne Looby within the Contract Documents (Drawing Nos. 401 and 402).



#### 4 SITE OPERATIONS

Site operations, which were conducted between 18th August and 21st September 2016, included:

- Nine cable percussion boreholes
- a standpipe installation in two boreholes

The exploratory holes and in situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plans.

#### 4.1 Boreholes

9 No boreholes (BH12-16 & BH15A, 15B, 15C, 15d) were put down to completion in minimum 150mm diameter using Dando 1500 light cable percussion soil boring rigs. All boreholes were terminated either at their scheduled completion depths, or else on encountering virtual refusal on obstructions, including large boulders and weathered bedrock.

Hand dug inspection pits were carried out between ground level and 1.2m depth to ensure boreholes were put down at locations clear of services or subsurface obstructions.

Disturbed (bulk and small bag) samples were taken within the encountered strata.

Standard penetration tests were carried out in accordance with EC7 at standard depth intervals using the split spoon sampler (SPT). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded.

Where water was added to assist with boring, a note has been added to the log to account for same.

Appendix A presents the borehole logs.

### 4.2 Standpipe installations

A 50mm dimeter groundwater monitoring standpipe was installed in boreholes BH14 and BH15D.

Details of the installations, including the depth range of the response zone, are provided in Appendix A on the individual borehole logs.



#### 5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described and their descriptions incorporated into the borehole logs.

#### 5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **compaction:** dry density/moisture content relationship, Moisture Condition Value (MCV) and California Bearing Ratio (CBR) tests
- soil and water chemistry: pH and water soluble sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Institute (1990) *BS 1377:1990, Methods of test for soils for civil engineering purposes. Parts 1 to 9.* 

The test results are presented in Appendix B.

#### 5.2 Environmental laboratory testing of soils

In addition, environmental testing, as specified by the Clients Representative was conducted on selected environmental samples by Chemtest at its laboratory in Newmarket, Suffolk. Results of environmental testing are presented in Appendix C.

#### **6 GROUND CONDITIONS**

#### 6.1 General geology of the area

The GSI online mapping for this area shows that the site is underlain by Made Ground, possibly overlying alluvial/marine deposits.

#### 6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

Made Ground (Paved surface): The boreholes encountered tarmacadam, granular fill (Clause 804 or





similar) and concrete down to a maximum depth of 0.96m (BH15).

- Made Ground (fill): reworked clay or granular fill with localised brick fragments was encountered to
  a maximum depth of 1.2m. It is likely that some of the underlying material is also Made Ground also
  although no man-made material was observed.
- Alluvial/Marine/Glacial Deposits: Predominantly granular deposits were encountered to a
  maximum observed depth of 20.5m (BH16). Occasional beds of marine clay/silt were also observed
  along with possible glacial till within BH14 and BH16.
- Bedrock: No bedrock was encountered.

#### 6.3 Groundwater

Groundwater was encountered during percussion boring through soil as water strikes at depths of between 0.8m and 4.0m. Given the proximity of the sea, it is likely that the groundwater will be tidal.

Details of the individual groundwater strikes, along with any relative changes in levels as works proceeded, are presented on the exploratory hole logs for each location.

Groundwater monitoring standpipes (50mm nominal internal diameter) were installed within BH14 and BH15D to facilitate long-term groundwater monitoring. Details of the response zone depths, seal depths etc are given on the borehole records in Appendix A.

#### 7 REFERENCES

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

BS EN ISO 14688-1: 2002: Geotechnical investigation and testing - Identification and classification of soil - Part 1 Identification and description. British Standards Institution.





Appendix A

**Borehole Logs** 

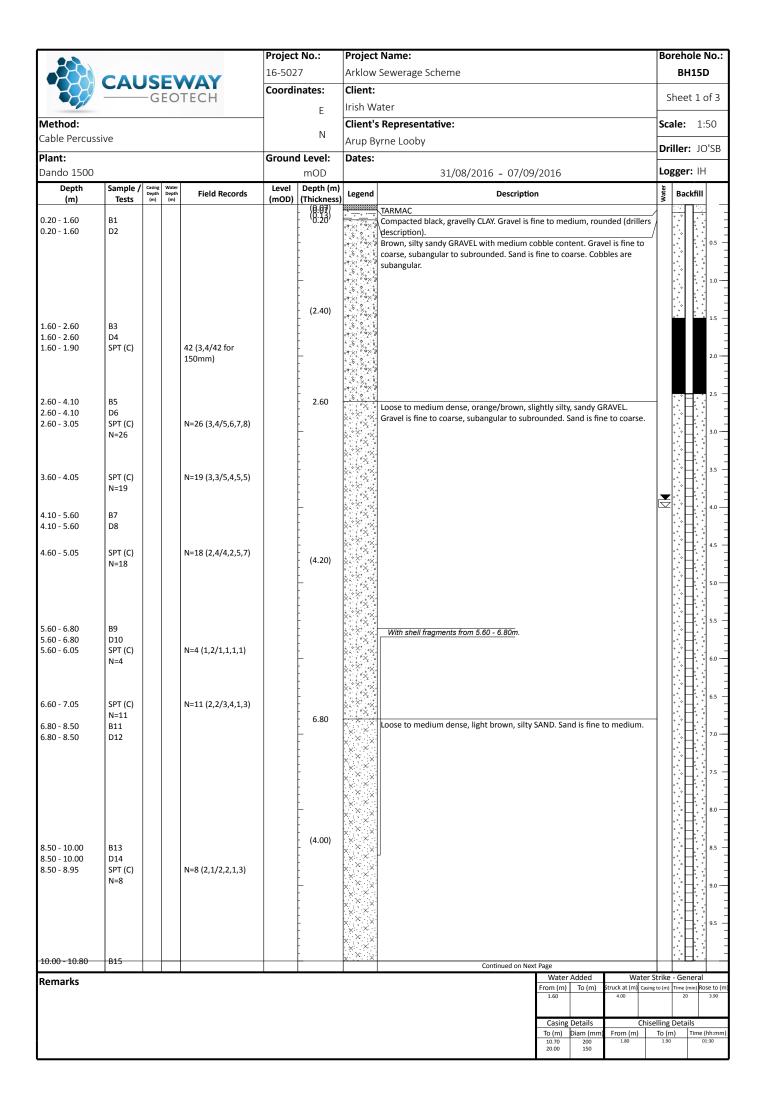
|                     |                |                 |                |                     | Project | : No.:                         | Project                                | t Name:                                                                                                                                | Во    | rehole        | No.:    |
|---------------------|----------------|-----------------|----------------|---------------------|---------|--------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---------|
|                     | CAL            | ıc              | E              | MAY                 | 16-502  | 7                              | Arklow                                 | Sewerage Scheme                                                                                                                        |       | BH12          | ·       |
|                     | CAC            | -G              | FO             | <b>VAY</b><br>TECH  | Coordi  | nates:                         | Client:                                |                                                                                                                                        | S     | heet 1        | of 2    |
|                     |                | G               | LO             | ILCII               |         | E                              | Irish W                                | 'ater                                                                                                                                  |       | IICCC I V     | 01 2    |
| Method:             |                |                 |                |                     |         |                                | Client's                               | s Representative:                                                                                                                      | Sca   | ale: 1:       | :50     |
| Cable Percuss       | ion            |                 |                |                     |         | N                              | Arup B                                 | yrne Looby                                                                                                                             |       | 211 \A        |         |
| Plant:              |                |                 |                |                     | Ground  | d Level:                       | Dates:                                 |                                                                                                                                        | Dri   | iller: W      | /D      |
| Dando               |                |                 |                |                     |         | mOD                            |                                        | 13/09/2016 - 15/09/2016                                                                                                                | Log   | gger: To      | OS      |
| Depth               | Sample /       | Casing<br>Depth | Water<br>Depth | Field Records       | Level   | Depth (m)                      | Legend                                 | Description                                                                                                                            | Water | Backfill      |         |
| (m)                 | Tests          | (m)             | (m)            | Tield Records       | (mOD)   | (Thickness)                    | Legend                                 | TARMACADAM                                                                                                                             | Š     | Duckiiii      | -       |
|                     |                |                 |                |                     |         | - (0.10)<br>- (0.20)<br>- 0.30 |                                        | MADE GROUND: Clause 804 fill                                                                                                           |       |               | 7       |
|                     |                |                 |                |                     |         | 0.30                           |                                        | MADE GROUND: Brown sandy fill with brick fragments.                                                                                    |       |               | 0.5 —   |
|                     |                |                 |                |                     |         | (0.70)                         |                                        |                                                                                                                                        |       |               |         |
|                     |                |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               |         |
| 1.00<br>1.00 - 1.45 | B1<br>SPT (C)  |                 |                | N=4 (1,0/1,1,1,1)   |         | - 1.00<br>- (0.20)<br>- 1.20   | ************************************** | Loose, purple/brown, slightly gravelly, very clayey SAND with low to                                                                   | 1     |               | 1.0 —   |
| 1.00 1.43           | N=4            |                 |                | (1,0) 1,1,1,1,      |         | 1.20                           |                                        | medium cobble content. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse. Cobbles are 63-160mm, subangular to | 1     |               |         |
| 1.20                | B2             |                 |                |                     |         | _                              |                                        | şubrounded.                                                                                                                            |       |               | 1.5 —   |
|                     |                |                 |                |                     |         |                                |                                        | Soft, purple/brown, slightly sandy, gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded.         |       |               | ╽┪      |
| 2.00                | D3             |                 |                |                     |         | (1.30)                         |                                        | Graver is line to course, subungular to subrounded.                                                                                    |       |               | 2.0 -   |
| 2.00 - 2.45         | SPT (C)        |                 |                | N=6 (2,2/1,2,2,1)   |         | -                              |                                        |                                                                                                                                        |       |               |         |
|                     | N=6            |                 |                |                     |         | -<br>-                         |                                        |                                                                                                                                        |       |               |         |
| 2.50                | B4             |                 |                |                     |         | 2.50                           | 7                                      | Medium dense, brown, gravelly, very clayey SAND. Gravel is fine to                                                                     |       |               | 2.5 —   |
|                     |                |                 |                |                     |         | (0.50)                         |                                        | medium, subangular to subrounded. Sand is fine to coarse.                                                                              |       |               |         |
| 3.00                | B5             |                 |                |                     |         | 3.00                           |                                        | Loose to medium dense, brown/orange, slightly silty very sandy GRAVEL.                                                                 |       |               | 3.0 —   |
| 3.00 - 3.45         | SPT (C)<br>N=9 |                 |                | N=9 (2,2/2,3,2,2)   |         | -                              |                                        | Gravel is fine to medium, subangular to rounded. Sand is fine to coarse.                                                               |       |               |         |
|                     | "              |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               | 3.5 —   |
|                     |                |                 |                |                     |         | -                              |                                        |                                                                                                                                        | _     |               |         |
|                     |                |                 |                |                     |         | -                              |                                        |                                                                                                                                        | b     |               |         |
| 4.00<br>4.00 - 4.45 | B6<br>SPT (C)  |                 |                | N=11 (3,2/2,3,3,3)  |         | <del>-</del><br>-              |                                        | Below 4.0m: Grades to silty gravelly SAND.                                                                                             |       |               | 4.0 —   |
| 4.00 4.45           | N=11           |                 |                | (3,2,2,3,3,3,       |         | (2.60)                         |                                        |                                                                                                                                        |       |               | 1       |
|                     |                |                 |                |                     |         |                                |                                        |                                                                                                                                        |       |               | 4.5     |
|                     |                |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               |         |
| 5.00                | B7             |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               | 5.0 —   |
| 5.00 - 5.45         | SPT (C)        |                 |                | N=9 (2,2/3,2,2,2)   |         | -                              |                                        |                                                                                                                                        |       |               |         |
| 5.10                | N=9<br>D8      |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               |         |
| 5.60                | В9             |                 |                |                     |         | 5.60                           |                                        | Loose, light brown/orange silty SAND. Sand is fine to coarse.                                                                          |       |               | 5.5 —   |
|                     |                |                 |                |                     |         |                                |                                        | boose, light brown/brange sitty SAND. Sand is line to coarse.                                                                          |       |               | 1 3     |
| 6.00                | B10            |                 |                |                     |         | _                              |                                        |                                                                                                                                        |       |               | 6.0 —   |
| 6.00 - 6.45         | SPT (C)<br>N=4 |                 |                | N=4 (1,2/0,1,1,2)   |         | -                              |                                        |                                                                                                                                        |       |               |         |
|                     |                |                 |                |                     |         | -<br>-                         |                                        |                                                                                                                                        |       |               | 6.5 —   |
|                     |                |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               |         |
| 7.00                | D4.4           |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               |         |
| 7.00                | B11            |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               | 7.0 —   |
|                     |                |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               | ]       |
| 7.50<br>7.50 - 7.95 | B12            |                 |                | N=0 (2.2/2.2.2.2)   |         | -                              |                                        |                                                                                                                                        |       |               | 7.5 —   |
| 7.30 - 7.93         | SPT (C)<br>N=9 |                 |                | N=9 (2,2/2,3,2,2)   |         | <del>-</del>                   |                                        |                                                                                                                                        |       |               |         |
|                     |                |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               | 8.0 —   |
|                     |                |                 |                |                     |         | Ē                              |                                        |                                                                                                                                        |       |               |         |
| 8.50                | B13            |                 |                |                     |         |                                |                                        |                                                                                                                                        |       |               | 8.5     |
| 0.50                | 513            |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               | ] ]     |
|                     |                |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               |         |
| 9.00<br>9.00 - 9.45 | B14<br>SPT (C) |                 |                | N=22 (4,4/5,5,5,7)  |         | <del> -</del><br> -            |                                        | Medium dense from 9.00m - 10.50m                                                                                                       |       |               | 9.0 —   |
| 5.00 - 5.45         | N=22           |                 |                | 14-22 (4,4/3,3,3,7) |         | -                              |                                        |                                                                                                                                        |       |               |         |
|                     |                |                 |                |                     |         |                                |                                        |                                                                                                                                        |       |               | 9.5     |
|                     |                |                 |                |                     |         | -                              |                                        |                                                                                                                                        |       |               | ]       |
| 10.00               | B15            |                 |                |                     |         |                                |                                        |                                                                                                                                        |       |               | $\Box$  |
|                     | 1-10           |                 |                |                     |         |                                |                                        | Continued on Next Page  Water Added Water S                                                                                            | trike | - General     | Щ       |
| Remarks             |                |                 |                |                     |         |                                |                                        | From (m) To (m) Struck at (m) Casing                                                                                                   |       | Time (min) Ro |         |
|                     |                |                 |                |                     |         |                                |                                        | 2.40 3.90 3.90<br>6.50 10.00<br>10.00 15.00                                                                                            |       | 20            | 3.70    |
|                     |                |                 |                |                     |         |                                |                                        | Casing Details Chise                                                                                                                   |       | Details       |         |
|                     |                |                 |                |                     |         |                                |                                        | To (m) Diam (mm) From (m)                                                                                                              | To (m | n) Time       | (hh:mm) |
|                     |                |                 |                |                     |         |                                |                                        |                                                                                                                                        |       |               |         |

|                                                                                                       |                                                                                                 |                        |                       |                                                                |                | Project Name:            |                    |                                                                    |          | No.:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------|-----------------------|----------------------------------------------------------------|----------------|--------------------------|--------------------|--------------------------------------------------------------------|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                       | CAL                                                                                             | JS                     | E١                    | VAY                                                            | 16-502         |                          |                    | Sewerage Scheme                                                    |          | BH12          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                       |                                                                                                 | -G                     | ΕO                    | <b>VAY</b><br>TECH                                             | Coordi         |                          | Client:<br>Irish W | ator                                                               | S        | heet 2        | of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Method:                                                                                               |                                                                                                 |                        |                       |                                                                | _              | E                        |                    | Representative:                                                    | Sca      | ile: 1        | .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cable Percus                                                                                          | sion                                                                                            |                        |                       |                                                                |                | Ν                        |                    | rne Looby                                                          |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Plant:                                                                                                |                                                                                                 |                        |                       |                                                                | Ground         | d Level:                 | Dates:             | ·                                                                  |          | ller: V       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dando                                                                                                 |                                                                                                 |                        |                       |                                                                |                | mOD                      |                    | 13/09/2016 - 15/09/2016                                            | -        | ger: T        | OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Depth<br>(m)                                                                                          | Sample /<br>Tests                                                                               | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Field Records                                                  | Level<br>(mOD) | Depth (m)<br>(Thickness) | Legend             | Description                                                        | Water    | Backfill      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.50<br>10.50 - 10.95<br>11.00<br>12.00<br>12.00 - 12.45<br>13.00<br>13.50<br>13.50 - 13.95<br>14.00 | B16<br>SPT (C)<br>N=30<br>D17<br>B18<br>SPT (C)<br>N=34<br>B19<br>D20<br>SPT (C)<br>N=39<br>B21 |                        |                       | N=30 (5,7/7,7,8,8)  N=34 (8,8/9,10,8,7)  N=39 (6,8/10,10,10,9) |                | (9.40)                   |                    | End of borehole at 15.000m                                         |          |               | 10.5 — 11.0 — 11.5 — 12.0 — 12.5 — 13.0 — 14.5 — 15.5 — 16.0 — 16.5 — 17.0 — 17.5 — 18.0 — 18.0 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.5 — 19.0 — 19.0 — 19.5 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19.0 — 19 |
|                                                                                                       |                                                                                                 |                        | -                     |                                                                |                |                          |                    |                                                                    | $\vdash$ |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Remarks                                                                                               |                                                                                                 |                        |                       | 1                                                              | 1              | 1                        | 1                  | Water Added   Water S   From (m)   To (m)   Struck at (m)   Casing |          | - General     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                       |                                                                                                 |                        |                       |                                                                |                |                          |                    | 2.40 3.90 3.90<br>6.50 10.00                                       | ιυ (m)   | Zime (min) Ri | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                       |                                                                                                 |                        |                       |                                                                |                |                          |                    |                                                                    |          | Details       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                       |                                                                                                 |                        |                       |                                                                |                |                          |                    | To (m) Diam (mm) From (m)                                          | To (n    |               | (hh:mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                       |                                                                                                 |                        |                       |                                                                |                |                          |                    |                                                                    |          |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                     |                   |                        |                       |                        | Project        | : No.:                   |                                  | t Name:                                                                                                                                      | Во    | rehole    | No.:    |
|---------------------|-------------------|------------------------|-----------------------|------------------------|----------------|--------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|---------|
|                     | CAL               | IC                     | E                     | MAY                    | 16-502         | 7                        | Arklow                           | / Sewerage Scheme                                                                                                                            |       | BH13      | ³       |
|                     | CAC               | _G                     | FO                    | WAY<br>TECH            | Coordi         | nates:                   | Client:                          |                                                                                                                                              | S     | heet 1    | of 2    |
|                     |                   | _                      |                       | 12011                  |                | Е                        | Irish W                          | /ater                                                                                                                                        | L     |           |         |
| Method:             |                   |                        |                       |                        |                | NI                       | Client'                          | s Representative:                                                                                                                            | Sca   | ale: 1    | :50     |
| Cable Percus        | sion              |                        |                       |                        |                | N                        | Arup B                           | syrne Looby                                                                                                                                  | Dr    | iller: V  | VD.     |
| Plant:              |                   |                        |                       |                        | Ground         | d Level:                 | Dates:                           |                                                                                                                                              |       |           |         |
| Dando               | T                 |                        |                       | 1                      |                | mOD                      |                                  | 15/09/2016 - 19/09/2016                                                                                                                      | -     | gger: ⊪   | 1       |
| Depth<br>(m)        | Sample /<br>Tests | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Field Records          | Level<br>(mOD) | Depth (m)<br>(Thickness) |                                  | Description                                                                                                                                  | Water | Backfill  |         |
|                     |                   |                        |                       |                        |                |                          |                                  | TARMACADAM                                                                                                                                   |       |           |         |
|                     |                   |                        |                       |                        |                | .0.20                    |                                  | MADE GROUND: Gravelly fill  Brown, sandy, very gravelly CLAY.                                                                                | 1     |           | ]       |
|                     |                   |                        |                       |                        |                | -<br>- (0.80)            |                                  |                                                                                                                                              |       |           | 0.5 —   |
|                     |                   |                        |                       |                        |                | -                        |                                  |                                                                                                                                              |       |           |         |
| 1.00                | B1                |                        |                       |                        |                | 1.00                     |                                  | Loose, brown, silty sandy GRAVEL with medium cobble content. Sand is                                                                         | -     |           | 1.0     |
| 1.00 - 1.45         | SPT (C)<br>N=7    |                        |                       | N=7 (2,2/1,2,2,2)      |                | -                        | ×···×                            | fine to coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles                                                                  |       |           |         |
| 1.50                | D2                |                        |                       |                        |                | (1.00)                   | ×···×                            | are subangular, 63-140mm dia.                                                                                                                |       |           | 1.5     |
|                     |                   |                        |                       |                        |                | -                        | × ^ ×                            |                                                                                                                                              |       |           |         |
| 2.00 - 2.45         | SPT (C)           |                        |                       | N=11 (2,2/3,2,3,3)     |                | 2.00                     | × × ×                            |                                                                                                                                              |       |           | 2.0 —   |
| 2.00 2.15           | N=11              |                        |                       | 11 (2,2,3,2,3,3,       |                | (0.40)                   |                                  | Firm, brown, slightly sandy, gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded.                      |       |           |         |
| 2.40                | В3                |                        |                       |                        |                | 2.40                     |                                  |                                                                                                                                              | -     |           |         |
|                     |                   |                        |                       |                        |                | (0.60)                   |                                  | Medium dense, dark grey/brown, slightly clayey, gravelly SAND. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse.   |       |           | 2.5     |
|                     |                   |                        |                       |                        |                | (0.00)                   |                                  |                                                                                                                                              |       |           |         |
| 3.00<br>3.00 - 3.45 | B4<br>SPT (C)     |                        |                       | N=8 (3,2/2,2,2,2)      |                | - 3.00<br>-              |                                  | Loose, dark grey/brown, slightly clayey, gravelly SAND with medium cobble                                                                    |       |           | 3.0 —   |
| 3.00 3.43           | N=8               |                        |                       | (3,2,2,2,2,2)          |                | -<br>-                   | - في                             | content Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse. Cobbles are 63-180mm dia, subrounded.                    |       |           |         |
|                     |                   |                        |                       |                        |                | (1.00)                   |                                  | course. Cobbies are 65 foothin ald, subrounded.                                                                                              |       |           | 3.5     |
|                     |                   |                        |                       |                        |                |                          |                                  |                                                                                                                                              |       |           |         |
| 4.00                | B5                |                        |                       |                        |                | -<br>- 4.00              |                                  | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                      |       |           | 4.0 —   |
| 4.00 - 4.45         | SPT (C)           |                        |                       | N=12 (3,3/3,3,3,3)     |                | <del>-</del><br>-        |                                  | Medium dense, dark grey/brown, slightly clayey, SAND and GRAVEL with low cobble content. Gravel is fine to coarse, subangular to subrounded. |       |           |         |
|                     | N=12              |                        |                       |                        |                | (1.00)                   |                                  | Sand is fine to coarse. Cobbles are subangular to subrounded, 63-140mm                                                                       |       |           | 4.5     |
|                     |                   |                        |                       |                        |                | - (1.00)                 |                                  | dia.                                                                                                                                         |       |           | 4.5     |
|                     |                   |                        |                       |                        |                | -                        |                                  |                                                                                                                                              |       |           | =       |
| 5.00<br>5.00 - 5.45 | B6<br>SPT (C)     |                        |                       | N=15 (3,4/4,4,3,4)     |                | - 5.00<br>-              | ٥ ، ٥                            | Medium dense, light brown, gravelly SAND with low cobble content. Gravel                                                                     |       |           | 5.0 —   |
| 5.00 51.15          | N=15              |                        |                       | 1 23 (3, 1, 1, 1,3, 1, |                | (0.70)                   | 4                                | is fine to medium, subangular to subrounded. Sand is fine to coarse.                                                                         |       |           | 1 3     |
|                     |                   |                        |                       |                        |                |                          | 4                                |                                                                                                                                              |       |           | 5.5     |
| 5.70                | В7                |                        |                       |                        |                | 5.70                     | ×××                              | Medium dense, orange, slightly silty, gravelly SAND.                                                                                         |       |           |         |
|                     |                   |                        |                       |                        |                | -                        | × ×                              |                                                                                                                                              |       |           | 6.0 —   |
|                     |                   |                        |                       |                        |                |                          | × × ×                            |                                                                                                                                              |       |           | 1 3     |
| 6.50                | B8                |                        |                       |                        |                | -<br>-                   | × × ×                            |                                                                                                                                              |       |           | 6.5     |
| 6.50 - 6.95         | SPT (C)           |                        |                       | N=18 (3,3/4,5,5,4)     |                | -<br>-                   | × × ×                            |                                                                                                                                              |       |           |         |
| 7.00                | N=18<br>B9        |                        |                       |                        |                | <u>E</u>                 | × × ×                            |                                                                                                                                              |       |           | 7.0 -   |
| 7.00                | وما               |                        |                       |                        |                | -                        | × × ×                            |                                                                                                                                              |       |           | 7.0     |
|                     |                   |                        |                       |                        |                | <u>-</u>                 | × × ×                            |                                                                                                                                              |       |           |         |
| 7.50                | D10               |                        |                       |                        |                | -                        | $\times$ $\times$ $\times$       |                                                                                                                                              |       |           | 7.5 —   |
|                     |                   |                        |                       |                        |                | _                        | ×,×,×                            |                                                                                                                                              |       |           | ]       |
| 8.00<br>8.00 - 8.45 | B11<br>SPT (C)    |                        |                       | N-22 (6.6/5.6.7.4)     |                | <u></u>                  | $\times$ $\times$ $\times$       |                                                                                                                                              |       |           | 8.0 —   |
| 0.00 - 0.43         | N=22              |                        |                       | N=22 (6,6/5,6,7,4)     |                | -<br>-                   | $\times^{\times}$                |                                                                                                                                              |       |           |         |
| 8.50                | D12               |                        |                       |                        |                | [                        | $\times^{\times}\times^{\times}$ |                                                                                                                                              |       |           | 8.5     |
|                     |                   |                        |                       |                        |                |                          | × × ×                            |                                                                                                                                              |       |           | 1 3     |
| 9.00                | B13               |                        |                       |                        |                | -                        | $\times \times \times$           |                                                                                                                                              |       |           | 9.0 —   |
|                     |                   |                        |                       |                        |                | -<br>-                   | ×××                              |                                                                                                                                              |       |           |         |
| 9.50                | D14               |                        |                       |                        |                | [                        | ×××                              |                                                                                                                                              |       |           | 9.5     |
| 9.50<br>9.50 - 9.95 | D14<br>SPT (C)    |                        |                       | N=16 (5,5/4,4,4,4)     |                | <u> </u>                 |                                  |                                                                                                                                              |       |           | 9.5     |
|                     | N=16              |                        |                       |                        |                | -                        | ××°                              |                                                                                                                                              |       |           |         |
| 10.00               | B15               |                        |                       |                        |                |                          | ×                                | Continued on Next Page                                                                                                                       |       |           |         |
| Remarks             |                   |                        |                       |                        |                |                          |                                  | Water Added Water S From (m) To (m) struck at (m) Casing                                                                                     |       | - General |         |
|                     |                   |                        |                       |                        |                |                          |                                  | 5.70 15.00                                                                                                                                   |       |           |         |
|                     |                   |                        |                       |                        |                |                          |                                  | Casing Details Chise                                                                                                                         | lling | Details   | -       |
|                     |                   |                        |                       |                        |                |                          |                                  |                                                                                                                                              | To (n |           | (hh:mm) |
|                     |                   |                        |                       |                        |                |                          |                                  |                                                                                                                                              |       |           |         |

|               |             |                 |                       |                      | Project |                   | Project Name:              |                                                             |        |         | No.:           |
|---------------|-------------|-----------------|-----------------------|----------------------|---------|-------------------|----------------------------|-------------------------------------------------------------|--------|---------|----------------|
|               | CAL         | ıc              | E                     | A/AV                 | 16-502  | 7                 | Arklow                     | Sewerage Scheme                                             |        | BH1     | L3             |
|               | CAL         | 72              |                       | <b>VAY</b><br>TECH   | Coordi  | nates:            | Client:                    |                                                             | c      | heet 2  | ) of 2         |
|               |             | -G              | EU                    | TECH                 |         | Е                 | Irish W                    | /ater                                                       | 3      | neet 2  | 2 01 2         |
| Method:       |             |                 |                       |                      | -       | _                 | Client's                   | s Representative:                                           | Sca    | ıle:    | 1:50           |
| Cable Percuss | ion         |                 |                       |                      |         | N                 |                            | vrna Laghy                                                  |        |         |                |
| Plant:        |             |                 |                       |                      | Ground  | d Level:          | Dates:                     |                                                             | Dri    | ller:   | WD             |
| Dando         |             |                 |                       |                      | Cround  | mOD               | Dutes.                     |                                                             | Log    | gger:   | IH             |
| Depth         | Sample /    | Casing<br>Depth | Water                 |                      | Level   | Depth (m)         |                            |                                                             | _      |         | $\blacksquare$ |
| (m)           | Tests       | Depth<br>(m)    | Water<br>Depth<br>(m) | Field Records        | (mOD)   | (Thickness)       | Legend                     | Description                                                 | Water  | Backfi  | "              |
|               |             |                 |                       |                      |         | -                 | * * * *                    |                                                             |        |         |                |
|               |             |                 |                       |                      |         | -                 | . × ×                      |                                                             |        |         |                |
|               |             |                 |                       |                      |         | -                 | ×××                        |                                                             |        |         | 10.5 —         |
|               |             |                 |                       |                      |         | -<br>-            | ×. × .                     |                                                             |        |         |                |
| 11.00         | B16         |                 |                       |                      |         | <del>-</del>      | ××××                       | Dense from 11.00m to 15.00m.                                |        |         | 11.0           |
| 11.00 - 11.45 | SPT (C)     |                 |                       | N=34 (7,7/7,10,10,7) |         | -                 | ×××                        | Bense nom 11.00m to 15.00m.                                 |        |         |                |
| 11.50         | N=34<br>D17 |                 |                       |                      |         | -                 | $\star$ $\times$ $\star$   |                                                             |        |         | 1              |
| 11.50         | D17         |                 |                       |                      |         | -                 | x, ×. ×                    |                                                             |        |         | 11.5 —         |
|               |             |                 |                       |                      |         | [                 | * * * *                    |                                                             |        |         | +              |
| 12.00         | B18         |                 |                       |                      |         | _                 | .×.×                       |                                                             |        |         | 12.0           |
|               |             |                 |                       |                      |         | -                 | ××                         |                                                             |        |         |                |
| 12.50 - 12.95 | SPT (C)     |                 |                       | N=37                 |         | -<br>(9.30)       | [x, x                      |                                                             |        |         | 12.5 —         |
|               | N=37        |                 |                       | (10,10/10,12,7,8)    |         | - \\\             | ××××                       |                                                             |        |         |                |
| l             |             |                 |                       |                      |         | -                 | × × ×                      |                                                             |        |         |                |
| 13.00         | B19         |                 |                       |                      |         | -                 | × × ×                      |                                                             |        |         | 13.0           |
|               |             |                 |                       |                      |         | <del>-</del><br>- | $\times$ $\times$ $\times$ |                                                             |        |         |                |
|               |             |                 |                       |                      |         | [                 | x, ×. ×                    |                                                             |        |         | 13.5           |
|               |             |                 |                       |                      |         | [                 |                            |                                                             |        |         | +              |
| 14.00         | B20         |                 |                       |                      |         | _                 | .x x                       |                                                             |        |         | 14.0 —         |
| 14.00 - 14.45 | SPT (C)     |                 |                       | N=41                 |         | -                 | ××                         |                                                             |        |         | -              |
|               | N=41        |                 |                       | (7,7/10,10,7,14)     |         | -                 | ×. × .                     |                                                             |        |         |                |
| 14.50         | D21         |                 |                       |                      |         | -                 | ×· · ×                     |                                                             |        |         | 14.5 —         |
|               |             |                 |                       |                      |         | -<br>-            | × × ×                      |                                                             |        |         | =              |
|               |             |                 |                       |                      |         | 15.00             | × × ×                      | End of borehole at 15.000m                                  |        |         | 15.0 —         |
|               |             |                 |                       |                      |         | -                 |                            | End of boreflole at 15.000m                                 |        |         |                |
|               |             |                 |                       |                      |         |                   |                            |                                                             |        |         | 15.5           |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         | 16.0 —         |
|               |             |                 |                       |                      |         | -<br>-            |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | -<br>-            |                            |                                                             |        |         | 16.5           |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | _                 |                            |                                                             |        |         | 17.0 -         |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         | ] ]            |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | <u>-</u>          |                            |                                                             |        |         | 17.5 —<br>—    |
|               |             |                 |                       |                      |         | <u>-</u>          |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | F                 |                            |                                                             |        |         | 18.0 —         |
|               |             |                 |                       |                      |         | [                 |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | _                 |                            |                                                             |        |         | 18.5           |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         | 19.0 —         |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         |                |
|               |             |                 |                       |                      |         | -<br>-            |                            |                                                             |        |         | 19.5 —         |
|               |             |                 |                       |                      |         | -                 |                            |                                                             |        |         |                |
|               |             |                 | L                     |                      |         |                   |                            |                                                             |        |         | =              |
|               |             |                 |                       |                      |         |                   |                            | I Washadad I was ex                                         | - دازم | Gor-    |                |
| Remarks       |             |                 |                       |                      |         |                   |                            | Water Added Water St From (m) To (m) Struck at (m) Casing t |        |         |                |
|               |             |                 |                       |                      |         |                   |                            | 5.70 15.00                                                  |        |         |                |
|               |             |                 |                       |                      |         |                   |                            | Casing Details Chisel                                       | ling   | Details |                |
|               |             |                 |                       |                      |         |                   |                            |                                                             | To (m  |         | ne (hh:mm)     |
|               |             |                 |                       |                      |         |                   |                            |                                                             |        |         |                |

|                     |                   |                 |       |                     | Project        | No.:                     | Project                                | t Name:                                                                                                                                              | Во      | reh   | ole           | No       | <u>.</u>                          |
|---------------------|-------------------|-----------------|-------|---------------------|----------------|--------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------------|----------|-----------------------------------|
|                     | CAL               | IC              | E     | MAY                 | 16-502         | 7                        | Arklow                                 | Sewerage Scheme                                                                                                                                      |         | В     | 3H14          | 4        |                                   |
|                     | CAC               | -G              | FO    | <b>VAY</b><br>TECH  | Coordi         | nates:                   | Client:                                |                                                                                                                                                      | ς       | her   | et 1          | of       | 2                                 |
|                     |                   | J               | LO    | TECH                |                | Е                        | Irish W                                | 'ater                                                                                                                                                | Ľ       |       |               |          | $\exists$                         |
| Method:             |                   |                 |       |                     |                |                          | Client's                               | s Representative:                                                                                                                                    | Sca     | ale:  | 1             | :50      | ,                                 |
| Cable Percuss       | ion               |                 |       |                     |                | N                        | Arup B                                 | yrne Looby                                                                                                                                           | Dr      | امالا | r: V          | \/D      | ╡                                 |
| Plant:              |                   |                 |       |                     | Ground         | Level:                   | Dates:                                 |                                                                                                                                                      |         |       | . v           | <u> </u> | $\dashv$                          |
| Dando               |                   |                 |       |                     |                | mOD                      |                                        | 21/09/2016 - 21/09/2016                                                                                                                              | Lo      | gge   | r: II         | H        |                                   |
| Depth<br>(m)        | Sample /<br>Tests | Casing<br>Depth | Depth | Field Records       | Level<br>(mOD) | Depth (m)<br>(Thickness) | Legend                                 | Description                                                                                                                                          | Water   | Ва    | ckfil         | ı        | ٦                                 |
| (III)               | lests             | (m)             | (m)   |                     | (IIIOD)        |                          |                                        | TARMACADAM                                                                                                                                           | >       |       | ПS            | 7        | ╡                                 |
|                     |                   |                 |       |                     |                | - (0.20)<br>- 0.20       |                                        | MADE GROUND: Brown, sandy, gravelly fill                                                                                                             | 1       |       |               |          | 4                                 |
|                     |                   |                 |       |                     |                | -                        |                                        |                                                                                                                                                      |         |       |               | 0.5      | 5 —                               |
|                     |                   |                 |       |                     |                | (1.00)                   |                                        |                                                                                                                                                      |         |       |               |          | 7                                 |
| 1.00                | D1                |                 |       |                     |                | -                        |                                        |                                                                                                                                                      |         |       |               | 1.0      | . –                               |
| 1.00 - 1.45         | SPT (C)           |                 |       | N=5 (2,1/1,1,1,2)   |                | 1.20                     |                                        |                                                                                                                                                      |         |       |               |          |                                   |
| 1.20                | N=5<br>B2         |                 |       |                     |                |                          | ÷ ×.                                   | Loose, light brown, slightly silty sandy GRAVEL with low cobble content. Gravel is fine to coarse, subangular to subrounded. Sand is fine to coarse. |         |       |               |          | ╡                                 |
| 1.60                | B3                |                 |       |                     |                | (0.80)                   | 4 X                                    | Cobbles are subrounded.                                                                                                                              |         |       |               | 1.5      | , –                               |
|                     |                   |                 |       |                     |                |                          | a X                                    |                                                                                                                                                      |         |       |               |          | ₹                                 |
| 2.00                | В4                |                 |       |                     |                | 2.00                     | ************************************** | Loose to medium dense, Brown/grey, slightly silty, gravelly SAND with low                                                                            | 1       | ۰     |               | 2.0      | ) <del>-</del>                    |
| 2.00 - 2.45         | SPT (C)<br>N=8    |                 |       | N=8 (2,2/2,2,2,2)   |                |                          | × × ·                                  | cobble content. Gravel is fine to coarse, angular to subrounded. Sand is                                                                             |         |       | ď.            | •        | 4                                 |
|                     |                   |                 |       |                     |                | -                        | × × ·                                  | fine to coarse. Cobbles are subangular to subrounded, 63-80mm dia.                                                                                   |         |       | H: 1          | ° 2.5    | 5 -                               |
|                     |                   |                 |       |                     |                | -                        | × × ×                                  |                                                                                                                                                      |         |       | Ħ:            |          | 4                                 |
| 2.00                | DE                |                 |       |                     |                | (2.00)                   | ×. × ×                                 |                                                                                                                                                      |         |       | Ħ:            |          | . 1                               |
| 3.00<br>3.00 - 3.45 | B5<br>SPT (C)     |                 |       | N=12 (3,3/4,2,3,3)  |                | - (2.00)<br>-            | ×.°×° ×                                |                                                                                                                                                      | _       |       | d:            | . 3.0    | ]                                 |
|                     | N=12              |                 |       |                     |                |                          | ×. ×.                                  |                                                                                                                                                      |         |       |               |          | Ⅎ                                 |
|                     |                   |                 |       |                     |                | -                        | ×.°×° ×                                |                                                                                                                                                      |         |       | <b>-</b> :    | 3.5      | ; –                               |
|                     |                   |                 |       |                     |                |                          | ×,°×°,×                                |                                                                                                                                                      |         |       | H.:           |          | 4                                 |
| 4.00                | В6                |                 |       |                     |                | 4.00                     | *X. *.                                 | Medium dense, red/brown, slightly silty, very sandy GRAVEL. Sand is fine                                                                             | -       |       | Д.            | . 4.(    | ) <del>-</del>                    |
| 4.00 - 4.45         | SPT (C)<br>N=16   |                 |       | N=16 (4,4/4,4,4,4)  |                | -                        | ×××                                    | to coarse. Gravel is angular to subrounded, fine to coarse.                                                                                          |         | ٠     | <b>∄</b> :∙   |          | 7                                 |
|                     | IN-10             |                 |       |                     |                |                          | ×××                                    |                                                                                                                                                      |         |       | <b>∄</b> :∫   | .* 4.5   | $\begin{bmatrix} 1 \end{bmatrix}$ |
|                     |                   |                 |       |                     |                |                          | × ×                                    |                                                                                                                                                      |         |       |               |          | ` <u> </u>                        |
|                     |                   |                 |       |                     |                | -                        | ^ ×                                    |                                                                                                                                                      |         |       | d:            | •        | 4                                 |
| 5.00<br>5.00 - 5.45 | B7<br>SPT (C)     |                 |       | N=16 (4,5/5,4,4,3)  |                | -                        | × · · · ·                              |                                                                                                                                                      |         |       | -             | 5.0      | , —                               |
|                     | N=16              |                 |       | 14-10 (4,5/5,4,4,5/ |                |                          | ×                                      |                                                                                                                                                      |         |       | Ħ:            |          | 4                                 |
| 5.40                | B8                |                 |       |                     |                | (3.00)                   | × . ^ . ×                              |                                                                                                                                                      |         |       | <b>=</b> :    | °, 5.5   | , –                               |
|                     |                   |                 |       |                     |                |                          | × × ×                                  |                                                                                                                                                      |         |       | <b>≓</b> : ¹  |          | Ⅎ                                 |
| 5.90                | D9                |                 |       |                     |                | -                        | ×· × ×                                 |                                                                                                                                                      |         | ů     |               | 6.0      | o                                 |
|                     |                   |                 |       |                     |                | -                        | × × ×                                  |                                                                                                                                                      |         |       | <b>-</b>      |          | 4                                 |
| 6.50 6.05           | CDT (C)           |                 |       |                     |                | -                        | × × ×                                  |                                                                                                                                                      |         |       | H. ·          |          | . 1                               |
| 6.50 - 6.95         | SPT (C)<br>N=14   |                 |       | N=14 (3,4/3,3,4,4)  |                |                          | ×. ×. ×                                |                                                                                                                                                      |         |       | H.:           | ° 6.5    | ' <del>]</del>                    |
|                     |                   |                 |       |                     |                |                          | $\times$ $\times$                      |                                                                                                                                                      |         |       | Д.            |          | Ⅎ                                 |
| 7.00                | B10               |                 |       |                     |                | - 7.00<br>-              |                                        | Medium dense, light yellow/brown, slightly gravelly, fine to medium SAND.                                                                            | 1       |       | Д.            | 7.0      | , —                               |
|                     |                   |                 |       |                     |                |                          |                                        | Gravel is subangular, fine.                                                                                                                          |         |       | <b>∄</b> :    | ۰        | 1                                 |
|                     |                   |                 |       |                     |                |                          |                                        |                                                                                                                                                      |         |       | <b>∄</b> .    | 7.5      | , 🚽                               |
|                     |                   |                 |       |                     |                |                          |                                        |                                                                                                                                                      |         |       | ď.            | •        | 3                                 |
| 8.00                | B11               |                 |       |                     |                | <u>-</u>                 |                                        |                                                                                                                                                      |         |       | <b>□</b> *. 1 | 8.0      |                                   |
| 8.00 - 8.45         | SPT (C)           |                 |       | N=22 (7,7/4,5,7,6)  |                | (2.40)                   |                                        |                                                                                                                                                      |         |       | H.            | •        | 4                                 |
| 0.50                | N=22<br>D12       |                 |       |                     |                |                          |                                        |                                                                                                                                                      |         |       | <b>∄</b> : ¹  |          | , ‡                               |
| 8.50                | DIZ               |                 |       |                     |                |                          |                                        |                                                                                                                                                      |         |       | <b>=</b> :    | 8.5      | ]                                 |
|                     |                   |                 |       |                     |                | -                        |                                        |                                                                                                                                                      |         |       | Ħ: ·          |          | Ⅎ                                 |
|                     |                   |                 |       |                     |                | <u> </u>                 |                                        |                                                                                                                                                      |         |       | <b> </b>  :   | 9.0      | ,—                                |
|                     |                   |                 |       |                     |                |                          |                                        |                                                                                                                                                      |         |       | <b>-</b>      |          | 4                                 |
| 9.40<br>9.50 - 9.95 | B13<br>SPT (C)    |                 |       | N=64                |                | 9.40                     |                                        | Very stiff, grey/brown, slightly sandy, slightly gravelly CLAY. Gravel is                                                                            | 1       |       | H.            | . 9.5    | 5 –                               |
|                     | N=64              |                 |       | (4,8/9,11,22,22)    |                |                          |                                        | angular to subrounded, fine to coarse.                                                                                                               |         |       |               |          | 3                                 |
| 10.00               | D14               |                 |       |                     |                | -                        |                                        |                                                                                                                                                      | $\perp$ |       | <u> </u>      | *        | $\exists$                         |
|                     | -1                |                 |       |                     |                |                          |                                        | Continued on Next Page Water Added Water S                                                                                                           | trike   | - Ge  | nera          | ㅗ        | ᅴ                                 |
| Remarks             |                   |                 |       |                     |                |                          |                                        | From (m) To (m) Struck at (m) Casing                                                                                                                 |         |       | (min) R       |          |                                   |
|                     |                   |                 |       |                     |                |                          |                                        |                                                                                                                                                      |         | -     |               | 5.2      |                                   |
|                     |                   |                 |       |                     |                |                          |                                        | Casing Details Chise                                                                                                                                 |         |       |               |          | ゴ                                 |
|                     |                   |                 |       |                     |                |                          |                                        | To (m) Diam (mm) From (m)                                                                                                                            | To (n   | 1)    | Time          | e (hh:r  | nm)                               |
|                     |                   |                 |       |                     |                |                          |                                        |                                                                                                                                                      |         |       |               |          |                                   |


|                                                                             |                                                                                                 |              |                       |                                                                       | Project |                 | 1       |                                                               | Bor   | ehole        | No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------|-----------------------|-----------------------------------------------------------------------|---------|-----------------|---------|---------------------------------------------------------------|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S C C                                                                       | CAL                                                                                             | IS           | Ε\                    | WAY                                                                   | 16-502  |                 |         | Sewerage Scheme                                               |       | BH1          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                             | CAC                                                                                             | -G           | FO                    | <b>VAY</b><br>TECH                                                    | Coordi  | nates:          | Client: |                                                               | Sł    | neet 2       | of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                             |                                                                                                 |              |                       | 12011                                                                 |         | Е               | Irish W |                                                               |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Method:                                                                     |                                                                                                 |              |                       |                                                                       |         | N               |         | s Representative:                                             | Sca   | <b>le:</b> 1 | :50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cable Percuss                                                               | sion                                                                                            |              |                       |                                                                       |         | N               | Arup B  | yrne Looby                                                    | Dri   | ler: V       | VD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Plant:</b><br>Dando                                                      |                                                                                                 |              |                       |                                                                       | Groun   | d Level:<br>mOD | Dates:  | 21/09/2016 - 21/09/2016                                       |       | ger: II      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Depth                                                                       | Sample /                                                                                        | Casing       | Water                 | =:                                                                    | Level   | Depth (m)       |         |                                                               |       |              | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (m)                                                                         | Tests                                                                                           | Depth<br>(m) | Water<br>Depth<br>(m) | Field Records                                                         | (mOD)   | (Thickness)     | Legend  | Description                                                   | Water | Backfil      | <u>'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11.00<br>11.00 - 11.45<br>11.50<br>12.00<br>12.50 - 12.95<br>12.80<br>13.00 | B15<br>SPT (C)<br>N=37<br>D16<br>B17<br>SPT (C)<br>N=60<br>B18<br>B19<br>D20<br>SPT (C)<br>N=47 |              | (m)                   | N=37 (7,8/8,9,10,10)  N=60 (8,10/10,15,15,20)  N=47 (7,7/10,10,10,17) | (mOD)   | (Thickness)     |         | End of borehole at 15.000m                                    | M .   |              | 11.0 —  11.0 —  11.0 —  11.0 —  11.1 —  11.0 —  11.1 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 —  11.0 — |
|                                                                             |                                                                                                 |              |                       |                                                                       |         | Ē               |         |                                                               |       |              | 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                             |                                                                                                 |              |                       |                                                                       |         | E               |         |                                                               |       |              | 19.0 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                             |                                                                                                 |              |                       |                                                                       |         | [               |         |                                                               |       |              | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                             |                                                                                                 |              |                       |                                                                       |         | Ē               |         |                                                               |       |              | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                             |                                                                                                 |              |                       |                                                                       |         | [               |         |                                                               |       |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                             |                                                                                                 | L            | L                     |                                                                       |         | <u> </u>        | L       |                                                               |       |              | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                             |                                                                                                 |              |                       |                                                                       |         |                 |         | I                                                             |       | <u>C-</u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remarks                                                                     |                                                                                                 |              |                       |                                                                       |         |                 |         | Water Added Water St<br>From (m) To (m) Struck at (m) Casing: |       | Genera       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                 |              |                       |                                                                       |         |                 |         | 3.50                                                          | . 1   | 20           | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                             |                                                                                                 |              |                       |                                                                       |         |                 |         |                                                               |       | Details      | /hh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                             |                                                                                                 |              |                       |                                                                       |         |                 |         | To (m) Diam (mm) From (m)                                     | To (m | ) Time       | (hh:mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                 |              |                       |                                                                       |         |                 |         |                                                               |       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 200            |          |                        |                       |                    |        |                | Project Name: |                                                                                          |       |           | No.:         |
|----------------|----------|------------------------|-----------------------|--------------------|--------|----------------|---------------|------------------------------------------------------------------------------------------|-------|-----------|--------------|
|                | CAL      | IC                     | EV                    | MAY                | 16-502 | 7              | Arklow        |                                                                                          | BH15  | ·         |              |
| $+\Delta H$    | CAL      | -C                     | F.O.                  | <b>VAY</b><br>TECH | Coordi |                | Client:       |                                                                                          | ς     | heet 1    | of 1         |
|                |          | J                      |                       |                    |        | Е              | Irish W       | ater                                                                                     | Ľ     | 1         | J. 1         |
| Method:        |          |                        |                       |                    |        |                | Client's      | s Representative:                                                                        | Sca   | ale: 1:   | :50          |
| Cable Percussi | ve       |                        |                       |                    |        | N              | Arup By       | yrne Looby                                                                               |       | iller: JO | NCD.         |
| Plant:         |          |                        |                       |                    | Ground |                | Dates:        |                                                                                          | Drill |           | ).ZB         |
| Dando 1500     |          |                        |                       |                    |        | mOD            |               |                                                                                          | Log   | gger:     |              |
| Depth          | Sample / | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Field Records      | Level  | Depth (m)      | Legend        | Description                                                                              | Water | Backfill  |              |
| (m)            | Tests    | (m)                    | (m)                   | Tield Records      | (mOD)  | (Thickness)    | Legena        | Tarmacadam surfacing                                                                     | š     | Dackiiii  |              |
|                |          |                        |                       |                    |        | (0.24)<br>0.32 |               | Very hard CONCRETE (drillers description)                                                |       |           | 1            |
|                |          |                        |                       |                    |        | 0.32           |               | Reinforced Concrete.  Reinforced CONCRETE with a concrete anchor. (drillers description) | 1 '   |           | 0.5          |
|                |          |                        |                       |                    |        | (0.64)         |               | Remoteca concrete with a condition and in. (armers description)                          |       |           | 0.5          |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 1 3          |
|                |          |                        |                       |                    |        | 0.96           |               | End of borehole at 0.960m                                                                | 1     |           | 1.0          |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 1.5 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | =            |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 2.0 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 2.5 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 3.0          |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 3.5          |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           | 1 7          |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 4.0 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 4.0          |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           | $\mathbb{H}$ |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           | 4.5          |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 5.0 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 5.5 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 6.0 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 6.5 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 7            |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           | 7.0 -        |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           | 3            |
|                |          |                        |                       |                    |        | _              |               |                                                                                          |       |           | 7.5          |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 8.0 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 8.5 —        |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 9.0 —        |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        | -              |               |                                                                                          |       |           | 9.5 —        |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        |                |               | Water Added Water St                                                                     | triko | - General | Щ            |
| Remarks        |          |                        |                       |                    |        |                |               | Water Added Water St From (m) To (m) Struck at (m) Casing to                             |       |           | se to (m)    |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           |              |
|                |          |                        |                       |                    |        |                |               | Casing Details Chisel                                                                    | lling | Details   | -            |
|                |          |                        |                       |                    |        |                |               |                                                                                          | To (m | n) Time   | (hh:mm)      |
|                |          |                        |                       |                    |        |                |               |                                                                                          |       |           |              |

|                            |                       |                        |                       | Project       |                | Project Name:            |                                     |                                                                                                                                     |       | No.:                       |           |
|----------------------------|-----------------------|------------------------|-----------------------|---------------|----------------|--------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|-----------|
| S A                        | CAUSEWAY<br>——GEOTECH |                        |                       |               | 16-502         |                          |                                     | Sewerage Scheme                                                                                                                     |       | BH15/                      | ۱ ۱       |
|                            | CAC                   | -G                     | FO                    | TECH          | Coordi         | nates:                   | Client:                             |                                                                                                                                     | S     | heet 1                     | of 1      |
|                            |                       |                        |                       | 12011         |                | Е                        | Irish W                             | 'ater                                                                                                                               | _     |                            |           |
| Method:                    |                       |                        |                       |               |                | NI                       | Client's                            | s Representative:                                                                                                                   | Sca   | ile: 1:                    | .50       |
| Cable Percus               | sive                  |                        |                       |               |                | N                        | Arup B                              | yrne Looby                                                                                                                          | Dri   | ller: JC                   | )'SB      |
| Plant:                     |                       |                        |                       |               | Ground         | l Level:                 | Dates:                              |                                                                                                                                     |       |                            |           |
| Dando 1500                 | T                     |                        |                       |               |                | mOD                      |                                     | 29/08/2016 - 29/08/2016                                                                                                             | ┡     | ger: IH                    | $\square$ |
| Depth<br>(m)               | Sample /<br>Tests     | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Field Records | Level<br>(mOD) | Depth (m)<br>(Thickness) | Legend                              | Description                                                                                                                         | Water | Backfill                   |           |
|                            |                       |                        |                       |               | , ,            | - (0.20)<br>- (0.28      |                                     | Tarmacadam surfacing (drillers description).                                                                                        |       |                            | 7         |
| 0.28 - 0.96<br>0.28 - 0.96 | B1<br>D2              |                        |                       |               |                | 0.28                     | XXXX                                | Very strong reinforced CONCRETE (drillers description).  Dark grey/brown, slightly sandy, gravelly SILT with medium cobble content. |       |                            | ]         |
| 0.26 - 0.96                | D2                    |                        |                       |               |                | (0.68)                   | x x x x                             | Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded, fine to coarse. Cobbles are subangular, 63 to 120mm.    |       |                            | 0.5 —     |
| 0.80                       | EW3                   |                        |                       |               |                | - (5.55)                 | * * * * *<br>* * * * *<br>* * * * * | Time to coarse. Coubles are subangular, 65 to 120mm.                                                                                | ¥     |                            |           |
|                            |                       |                        |                       |               |                | 0.96                     | (***X; X;                           | End of borehole at 0.960m                                                                                                           |       |                            | 1.0       |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 1.5 —     |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 2.0 -     |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | -         |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 2.5       |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 1 3       |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 3.0 —     |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 3.5       |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 1 3       |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 4.0 —     |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 4.5       |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 4.5       |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | =         |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 5.0 —     |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 1 3       |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 5.5       |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | =         |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 6.0 -     |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 1 3       |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 6.5 —     |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 7.0       |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 7.0 -     |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 7.5 —     |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                | _                        |                                     |                                                                                                                                     |       |                            | 8.0       |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | =         |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | 8.5       |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | ]         |
|                            |                       |                        |                       |               |                | <u>-</u>                 |                                     |                                                                                                                                     |       |                            | 9.0 -     |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            | =         |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            | 9.5 —     |
|                            |                       |                        |                       |               |                | -                        |                                     |                                                                                                                                     |       |                            |           |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            |           |
| Remarks                    |                       |                        |                       |               |                |                          |                                     | Water Added Water S From (m) To (m) struck at (m) Casing                                                                            |       | - General<br>Time (min) Ro | se to (m) |
|                            |                       |                        |                       |               |                |                          |                                     | 0.80                                                                                                                                |       | 20                         | 0.80      |
|                            |                       |                        |                       |               |                |                          |                                     | Casing Details Chise                                                                                                                | lling | Details                    | $\dashv$  |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     | To (m |                            | (hh:mm)   |
|                            |                       |                        |                       |               |                |                          |                                     |                                                                                                                                     |       |                            |           |

| Method:   Series      | 200         |       |              |              |               | Project |             | Project                                 | Borehole No.:                                                              |          |               |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|--------------|--------------|---------------|---------|-------------|-----------------------------------------|----------------------------------------------------------------------------|----------|---------------|-----------------|
| Method:   Capic Percusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S A         | CAL   | IS           | ΕV           | WAY           |         |             |                                         |                                                                            |          | BH15          | В               |
| Method:   Capic Percusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | CAC   | -G           | ΕO           | TECH          | Coordi  | nates:      |                                         |                                                                            | S        | heet 1        | of 1            |
| Cable Personative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |       |              |              |               |         | Е           |                                         |                                                                            |          |               |                 |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Method:     |       |              |              |               |         | N           |                                         |                                                                            | Sca      | ale: 1:       | :50             |
| Pietric   Street   Pietric   Street     |             | ve    |              |              |               |         |             |                                         |                                                                            | Dr       | iller: JO     | D'SB            |
| Depth   Sample   Mark   |             |       |              |              |               | Ground  |             | Dates:                                  |                                                                            |          |               |                 |
| Comparison   Tests     |             | C - / | Contra       | 185-4        |               | 11      |             |                                         | 30/08/2016 - 30/08/2016                                                    | -        | gger: IF      | <u>'</u>        |
| 238-041   02   038-041   032   038-041   032   038-041   032   038-041   032   038-041   032   038-041   032   038-041   032   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   038-041   |             |       | Depth<br>(m) | Depth<br>(m) | Field Records |         | (Thickness) | Legend                                  | Description                                                                | Wate     | Backfill      |                 |
| 0.38   0.41   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |       |              |              |               |         | (0.23)      |                                         |                                                                            | 1        |               |                 |
| 0-41 - 0-316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |       |              |              |               |         | 0.28        | XXXX                                    | Light brown, sandy, gravelly SILT with low cobble content. Sand is fine to |          |               |                 |
| Remarks    Display   Displ | 0.41 - 0.96 | В3    |              |              |               |         | (0.68)      | × × × >                                 |                                                                            |          |               | 0.5 —           |
| Remarks    Band of toxin-toking at 0.000tm   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.41 - 0.96 | D4    |              |              |               |         |             | X X X X                                 | ,                                                                          |          |               | ]               |
| Remarks    Wester Applied   Wester Strike - Govern   Technical   Follow   Technical   Tech |             |       |              |              |               |         | 0.96<br>-   | * * * * * * * * * * * * * * * * * * * * | End of borehole at 0.960m                                                  | 1        |               | 1.0 —           |
| Remarks    Wester Applied   Wester Strike - Govern   Technical   Follow   Technical   Tech |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| Remarks    Mater Address   Water States   Grazua   Grazua |             |       |              |              |               |         | Ė           |                                         |                                                                            |          |               | 1.5             |
| Remarks    Mater Address   Water States   Grazua   Grazua |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| Remarks    Water Added   Water Strike - General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 2.0 —           |
| Remarks    Water Added   Water Strike - General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 1 3             |
| Remarks    Water Added   Water Strike - General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         |             |                                         |                                                                            |          |               | 2.5             |
| Remarks    Water Added   Water Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   Early   Water Made of Strike -  |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| Remarks    Water Added   Water Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   From feet   Early   Water Made of Strike - General   Early   Water Made of Strike -  |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| Remarks    Water Added   Water Stills - General   Front (no)   Tooks at ting   compress to ting   compress t |             |       |              |              |               |         |             |                                         |                                                                            |          |               | 3.0             |
| Remarks    Water Added   Water Stills - General   Front (no)   Tooks at ting   compress to ting   compress t |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 3.5 —           |
| As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 1 3             |
| Remarks    Water Added   Water Strike - General   From (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   From (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   To (m)   To (m)   Strukk at fed   To (m)   To  |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 4.0             |
| Remarks    Water Added   Water Strike - General   From (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   From (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   Incomplex to interest   To (m)   To (m)   Strukk at fed   Carage con   To (m)   To (m)   Strukk at fed   To (m)   To  |             |       |              |              |               |         |             |                                         |                                                                            |          |               |                 |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m)   Struke   Struk |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 4.5 —           |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m)   Struke   Struk |             |       |              |              |               |         | Ē           |                                         |                                                                            |          |               | 1 3             |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m)   Struke   Struk |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 5.0 —           |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | ], =            |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m |             |       |              |              |               |         |             |                                         |                                                                            |          |               | 5.5             |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| Remarks    Material    |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 6.0 —           |
| Remarks    Material    |             |       |              |              |               |         | Ē           |                                         |                                                                            |          |               | 1 3             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 6.5 —           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         |             |                                         |                                                                            |          |               |                 |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m)   Struck at (m)   Casing Details   Chiselling  |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 7.0 —           |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m)   Struck at (m)   Casing Details   Chiselling  |             |       |              |              |               |         | <u> </u>    |                                         |                                                                            |          |               | ]               |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m)   Struck at (m)   Casing Details   Chiselling Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 7.5             |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m)   Struck at (m)   Casing Details   Chiselling Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |       |              |              |               |         | Ė           |                                         |                                                                            |          |               |                 |
| Remarks    Mater Added   Water Strike - General   From (m)   To (m)   Struck at (m)   Casing Details   Chiselling Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |       |              |              |               |         |             |                                         |                                                                            |          |               | 8.0             |
| Remarks    Mater Added   Water Strike - General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| Remarks    Mater Added   Water Strike - General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         | [           |                                         |                                                                            |          |               | 8.5             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         | <u> </u>    |                                         |                                                                            |          |               | ]               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 9.0 —           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| From (m) To (m) Struck at (m) Casing to (m) Time (min) Rose to (m)  Casing Details Chiselling Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |       |              |              |               |         | -           |                                         |                                                                            |          |               | 9.5             |
| From (m) To (m) Struck at (m) Casing to (m) Time (min) Rose to (m)  Casing Details Chiselling Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |       |              |              |               |         | -           |                                         |                                                                            |          |               |                 |
| From (m) To (m) Struck at (m) Casing to (m) Time (min) Rose to (m)  Casing Details Chiselling Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |       |              |              |               |         | -           |                                         |                                                                            | <u> </u> |               | $\vdash \dashv$ |
| From (m) To (m) Struck at (m) Casing to (m) Time (min) Rose to (m)  Casing Details Chiselling Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks     | I     |              |              |               | İ       | <u> </u>    | İ                                       |                                                                            |          |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         |             |                                         | From (m) To (m) Struck at (m) Casing                                       | to (m)   | Time (min) Ro | se to (m)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         |             |                                         |                                                                            |          |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         |             |                                         |                                                                            |          |               | (hh:mm)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |              |              |               |         |             |                                         |                                                                            |          |               |                 |

| Project No.: Project Name:                                                                                                                                   | 1                  | Boreh             | ole No       | э.: <b>Т</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------|--------------|
| 16-5027 Arklow Sewerage Scheme                                                                                                                               |                    | В                 | H15C         |              |
| CAUSEWAY GEOTECH  16-5027  Arklow Sewerage Scheme  Coordinates: Client:                                                                                      |                    | She               | et 1 of      | 1            |
| E Irish Water                                                                                                                                                |                    | 5110              |              | _            |
| Method: Client's Representative:                                                                                                                             |                    | Scale:            | 1:50         |              |
| Cable Percussive N Arup Byrne Looby                                                                                                                          |                    | Deille            | • 10'0       | · D          |
| Plant: Ground Level: Dates:                                                                                                                                  | Driller: JO        |                   |              | D D          |
| Dando 1500 mOD 30/08/2016 - 30/08/2016                                                                                                                       | l                  | Logge             | r: IH        |              |
| Depth (m) Field Records Level (mOD) Casing (mOD) Depth (m) (Thickness) Legend (mOD) Description                                                              |                    | Mater<br>Ba       | ckfill       |              |
| Tarmacadam surfacing (drillers description)                                                                                                                  |                    | >                 |              | =            |
| 0.08 - 0.20 Dark brown, slightly sandy, very gravelly SILT with low cobble content                                                                           |                    |                   |              | 4            |
| 0.20 - 1.20 B3 Cohbles are subangular 63-90mm                                                                                                                | iueu.              |                   | 0.           | 5 —          |
| 0.20 - 1.20 D4 Light brown, sandy, gravelly SILT with low cobble content. Sand is fine coarse. Gravel is fine to coarse, subangular to subrounded. Cobbles a |                    |                   |              | 7            |
|                                                                                                                                                              | ai e               |                   | 1.           | 0 —          |
| 1.20 End of horshole at 1.200m                                                                                                                               |                    |                   |              | _            |
| End of borehole at 1.200m                                                                                                                                    |                    |                   |              | 4            |
|                                                                                                                                                              |                    |                   | 1.           | 5 —          |
|                                                                                                                                                              |                    |                   |              | 3            |
|                                                                                                                                                              |                    |                   | 2.           | 0 —          |
|                                                                                                                                                              |                    |                   |              | 4            |
|                                                                                                                                                              |                    |                   | 2.           | 5 —          |
|                                                                                                                                                              |                    |                   |              | 3            |
|                                                                                                                                                              |                    |                   | 3.           | 0 —          |
|                                                                                                                                                              |                    |                   |              | 4            |
|                                                                                                                                                              |                    |                   |              | , Ŧ          |
|                                                                                                                                                              |                    |                   | 3.           | • 🗌          |
|                                                                                                                                                              |                    |                   |              | 4            |
|                                                                                                                                                              |                    |                   | 4.           | 0 —          |
|                                                                                                                                                              |                    |                   |              | 7            |
|                                                                                                                                                              |                    |                   | 4.           | 5 —          |
|                                                                                                                                                              |                    |                   |              | ╡            |
|                                                                                                                                                              |                    |                   | 5.           | ٥٦           |
|                                                                                                                                                              |                    |                   |              | 3            |
|                                                                                                                                                              |                    |                   | 5.           | 5 —          |
|                                                                                                                                                              |                    |                   |              | 4            |
|                                                                                                                                                              |                    |                   |              | . =          |
|                                                                                                                                                              |                    |                   | 6.           | 0 —          |
|                                                                                                                                                              |                    |                   |              | ╡            |
|                                                                                                                                                              |                    |                   | 6.           | 5 —          |
|                                                                                                                                                              |                    |                   |              | 3            |
|                                                                                                                                                              |                    |                   | 7.           | 0 —          |
|                                                                                                                                                              |                    |                   |              | 4            |
|                                                                                                                                                              |                    |                   | 7.           | 5 —          |
|                                                                                                                                                              |                    |                   |              | 3            |
|                                                                                                                                                              |                    |                   | 8.           | 0 —          |
|                                                                                                                                                              |                    |                   |              | 4            |
|                                                                                                                                                              |                    |                   |              | , ‡          |
|                                                                                                                                                              |                    |                   | 8.           | ` ]          |
|                                                                                                                                                              |                    |                   |              | 1            |
|                                                                                                                                                              |                    |                   | 9.           | 0 —          |
|                                                                                                                                                              |                    |                   |              |              |
|                                                                                                                                                              |                    |                   | 9.           | 5 🚽          |
|                                                                                                                                                              |                    |                   |              | 4            |
|                                                                                                                                                              |                    |                   |              | 4            |
|                                                                                                                                                              | Water Str          |                   |              | $\exists$    |
| From (m) To (m) Struck at                                                                                                                                    | (m) Casing to      | (m) Time          | (min) Rose 1 | to (m)       |
|                                                                                                                                                              |                    |                   |              | _            |
| Casing Details To (m) Diam (mm) From                                                                                                                         | Chiselli<br>(m) To | ing Deta<br>o (m) | Time (hh:    | mm)          |
|                                                                                                                                                              |                    |                   |              |              |



|                                |                   |                        |                       |                           | Project        | : No.:                   | Project           | t Name:                                                                                                                                           | Во       | reh   | ole          | No.:           | ٦         |
|--------------------------------|-------------------|------------------------|-----------------------|---------------------------|----------------|--------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------------|----------------|-----------|
|                                | CAL               | IC                     | E                     | MAY                       | 16-502         | 7                        | Arklow            | Sewerage Scheme                                                                                                                                   |          | В     | H15I         | D              | ١         |
|                                | CAC               | _ C                    | FO                    | WAY<br>TECH               | Coordi         | nates:                   | Client:           |                                                                                                                                                   |          | she.  | et 2 (       | of 3           | 1         |
|                                |                   | O                      |                       | , I L C I I               |                | Е                        | Irish W           | 'ater                                                                                                                                             | Ļ        |       |              | 01 5           | 4         |
| Method:                        |                   |                        |                       |                           |                |                          | Client's          | s Representative:                                                                                                                                 | Sc       | ale:  | 1:           | :50            | ١         |
| Cable Percuss                  | sive              |                        |                       |                           |                | N                        | Arup B            | yrne Looby                                                                                                                                        | Dr       | امالة | r: JC        | איכם           | ┪         |
| Plant:                         |                   |                        |                       |                           | Ground         | d Level:                 | Dates:            |                                                                                                                                                   |          |       |              |                | $\dashv$  |
| Dando 1500                     |                   |                        |                       |                           |                | mOD                      |                   | 31/08/2016 - 07/09/2016                                                                                                                           | Lo       | gge   | r: I⊢        | 1              |           |
| Depth<br>(m)                   | Sample /<br>Tests | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Field Records             | Level<br>(mOD) | Depth (m)<br>(Thickness) | Legend            | Description                                                                                                                                       | Water    | Ва    | ckfill       |                |           |
| 10.00 - 10.80                  | D16               | (,                     | (11)                  |                           | (IIIOD)        | (TITICKTIESS)            | . × . ×           |                                                                                                                                                   |          |       | 7: :         | •              | 4         |
| 10.00 - 10.45                  | SPT (C)<br>N=22   |                        |                       | N=22 (4,5/5,5,6,6)        |                | -                        | × ^×              |                                                                                                                                                   |          |       | 7: :         |                | 1         |
|                                | 14-22             |                        |                       |                           |                | -                        | × × ×             |                                                                                                                                                   |          |       | ٦.,          | 10.5           | 4         |
| 10.70 - 11.15                  | U17               |                        |                       |                           |                | 10.00                    | × × ×             |                                                                                                                                                   |          | i.º   |              |                | 7         |
| 10.70 - 10.70                  | SPT (C)           |                        |                       | 40 (0 for 0mm/40 for 0mm) |                | 10.80                    |                   | Hard grey/brown CLAY.                                                                                                                             |          |       | ∃: :         | 11.0 -         | 3         |
| 10.80 - 11.30                  | B18               |                        |                       | ,                         |                | (0.50)                   |                   |                                                                                                                                                   |          |       | :            |                | 1         |
| 10.80 - 11.30<br>11.15 - 11.60 | D19<br>SPT (C)    |                        |                       | N=23 (6,6/5,6,4,8)        |                | 11.30                    | *. ×. ×           | Medium dense, light brown/orange, slightly silty, very gravelly SAND.                                                                             |          |       | 7::          |                | 1         |
|                                | N=23              |                        |                       | 25 (6)6/5/6/1/6/          |                | (0.70)                   | ××××              | Gravel is fine to medium, angular to subangular. Sand is fine to coarse.                                                                          |          |       | ∄::          | 11.5           | ╡         |
| 11.30 - 12.00<br>11.30 - 12.00 | B20<br>D21        |                        |                       |                           |                | (0.70)                   | ×××               |                                                                                                                                                   |          |       | <b>∄∷</b>    |                | 1         |
| 12.00 - 13.50                  | B22               |                        |                       |                           |                | 12.00                    | ×××               | Dense, dark grey, gravelly SAND with high cobble content Gravel is fine to                                                                        | -        |       | ∄∷           | 12.0 -         | ┨         |
| 12.00 - 13.50                  | D23               |                        |                       |                           |                |                          | ٥                 | coarse, subangular to subrounded. Sand is medium to coarse. Cobbles are                                                                           |          |       | <b>-</b> ::: |                | 3         |
|                                |                   |                        |                       |                           |                | -                        | (4)               | subangular to subrounded, 63-90mm dia.                                                                                                            |          |       | 7            | 12.5           | Ⅎ         |
| 12.65 - 13.10                  | SPT (C)           |                        |                       | N=40 (4,7/10,9,12,9)      |                | (4.50)                   | 4                 |                                                                                                                                                   |          |       | <b>-</b>     |                | 1         |
|                                | N=40              |                        |                       |                           |                | (1.50)                   |                   |                                                                                                                                                   |          |       |              |                | 1         |
|                                |                   |                        |                       |                           |                | -                        |                   |                                                                                                                                                   |          |       |              | 13.0 -         | 7         |
|                                |                   |                        |                       |                           |                | -                        |                   |                                                                                                                                                   |          |       | - : :        |                | 7         |
| 13.50 - 15.00                  | B24               |                        |                       |                           |                | - 13.50                  |                   | Medium Dense to Dense, dark grey, slightly gravelly SAND with some                                                                                | ł        | ٠     | 7::          | 13.5           | ┨         |
| 13.50 - 15.00                  | D25               |                        |                       |                           |                |                          |                   | lenses of firm Clay present. Gravel is fine to medium, subangular to                                                                              |          |       | ∄::          |                | 3         |
|                                |                   |                        |                       |                           |                | _                        |                   | subrounded. Sand is medium to coarse.                                                                                                             |          |       | J::          | 14.0 -         | $\exists$ |
| 14.15 - 14.60                  | SPT (C)           |                        |                       | N=31 (3,6/7,6,10,8)       |                | - (, ==)                 |                   |                                                                                                                                                   |          |       | ∄::          |                | 1         |
|                                | N=31              |                        |                       |                           |                | (1.50)                   |                   |                                                                                                                                                   |          |       | -            |                | 1         |
|                                |                   |                        |                       |                           |                | -                        |                   |                                                                                                                                                   |          |       | 7::          | 14.5           | ╡         |
|                                |                   |                        |                       |                           |                | -                        |                   |                                                                                                                                                   |          |       |              | :              | 1         |
| 15.00 - 16.00                  | B26               |                        |                       |                           |                | 15.00                    |                   | Soft to firm, brown/grey CLAY                                                                                                                     | 1        |       | ٦. :         | 15.0 -         | ┨         |
| 15.00 - 16.00                  | D27               |                        |                       |                           |                | [                        |                   | Soft to min, brown, grey ear                                                                                                                      |          |       |              |                | $\exists$ |
|                                |                   |                        |                       |                           |                | _                        |                   |                                                                                                                                                   |          |       |              | 15.5           | Ⅎ         |
|                                |                   |                        |                       |                           |                | -                        |                   |                                                                                                                                                   |          |       | , , ,        |                | 1         |
|                                |                   |                        |                       |                           |                | -                        |                   |                                                                                                                                                   |          |       |              |                | 1         |
| 16.00 - 16.45<br>16.00 - 17.50 | U28<br>B30        |                        |                       |                           |                | -                        |                   |                                                                                                                                                   |          |       |              | 16.0 -         | 7         |
| 16.00 - 17.50                  | D31               |                        |                       |                           |                |                          |                   |                                                                                                                                                   |          |       |              |                | 7         |
| 16.50 - 16.95                  | SPTLS29           |                        |                       |                           |                | _                        |                   |                                                                                                                                                   |          |       |              | 16.5           | Ⅎ         |
| 16.50 - 16.95                  | SPT (S)<br>N=8    |                        |                       | N=8 (2,2/1,2,3,2)         |                | (3.50)                   |                   |                                                                                                                                                   |          |       |              |                | 1         |
|                                |                   |                        |                       |                           |                | -                        | <u></u>           |                                                                                                                                                   |          |       |              | 17.0 —         | ╛         |
|                                |                   |                        |                       |                           |                | -                        | <u> </u>          |                                                                                                                                                   |          |       |              |                | 1         |
| 17.50 40.50                    | D22               |                        |                       |                           |                | -                        | <u> </u>          |                                                                                                                                                   |          |       |              |                | 1         |
| 17.50 - 18.50<br>17.50 - 18.50 | B32<br>D33        |                        |                       |                           |                | E                        | <u> </u>          |                                                                                                                                                   |          |       |              | 17.5           | Ę         |
|                                |                   |                        |                       |                           |                | ţ                        | <u> </u>          |                                                                                                                                                   |          |       |              |                | 1         |
| 18.00 - 18.45                  | SPT (S)           |                        |                       | N=25 (3,4/5,7,6,7)        |                | -                        | <u> </u>          | Below 18.0m: Stiff to very stiff.                                                                                                                 |          |       |              | 18.0 -         | Ⅎ         |
|                                | N=25              |                        |                       |                           |                | ‡                        | <u> </u>          |                                                                                                                                                   |          |       |              |                | 1         |
| 18.50 - 20.00                  | B34               |                        |                       |                           |                | -<br>- 18.50             |                   | Cray/Proup clightly clayey granully CAND with law as his assets of the                                                                            | 1        |       |              | 18.5           | 4         |
| 18.50 - 20.00                  | D35               |                        |                       |                           |                | -                        | ئے۔<br>نے میں۔    | Grey/Brown, slightly clayey, gravelly SAND with low cobble content. Gravel is fine to coarse, subangular to subrounded. Sand is medium to coarse. |          |       |              |                | 1         |
|                                |                   |                        |                       |                           |                | -                        | ، ف               | Cobbles are subangular to subrounded, 63-100mm dia.                                                                                               |          |       |              |                | 1         |
|                                |                   |                        |                       |                           |                | Ē.                       | بف ه              |                                                                                                                                                   |          |       |              | 19.0 -         | $\exists$ |
|                                |                   |                        |                       |                           |                | (1.50)                   | 4 -4              |                                                                                                                                                   |          |       |              |                | 1         |
|                                |                   |                        |                       |                           |                | -                        | ب ب               |                                                                                                                                                   |          |       |              | 19.5           | $\exists$ |
|                                |                   |                        |                       |                           |                | ‡                        | ئے ہے۔<br>انگیاری |                                                                                                                                                   |          |       |              |                | 1         |
|                                |                   |                        | -                     |                           |                | 20.00                    |                   | Continued on Next Page                                                                                                                            | $\vdash$ |       |              |                | 4         |
| Remarks                        |                   |                        |                       | 1                         |                | L                        | <u> </u>          | Continued on Next Page  Water Added Water S                                                                                                       | trike    | - Ge  | neral        | <u> </u>       | $\dashv$  |
| incilial KS                    |                   |                        |                       |                           |                |                          |                   | From (m) To (m) Struck at (m) Casing                                                                                                              |          |       | (min) Ro     | se to (        | m)        |
|                                |                   |                        |                       |                           |                |                          |                   |                                                                                                                                                   |          |       |              |                |           |
|                                |                   |                        |                       |                           |                |                          |                   | Casing Details Chise                                                                                                                              |          |       |              | /LL            | 1         |
|                                |                   |                        |                       |                           |                |                          |                   | To (m) Diam (mm) From (m) 10.70 200 1.80                                                                                                          | To (r    |       |              | (hh:mn<br>1:30 | 11)       |
|                                |                   |                        |                       |                           |                |                          |                   | 20.00 150                                                                                                                                         |          |       | 1            |                | - 1       |

|                                 |          |                        |                       |                                | Project |                   | Project |                     |                |            |                  | Во           |                  | e No.:              |
|---------------------------------|----------|------------------------|-----------------------|--------------------------------|---------|-------------------|---------|---------------------|----------------|------------|------------------|--------------|------------------|---------------------|
| SCH.                            | CAL      | IS                     | F۱                    | WAY                            | 16-502  |                   |         | Sewerage Scheme     |                |            |                  |              | BH1              | 5D                  |
|                                 |          | -G                     | EO                    | <b>VAY</b><br>TECH             | Coordi  |                   | Client: |                     |                |            |                  | S            | heet 3           | 3 of 3              |
|                                 |          |                        | _                     |                                | -       | Е                 | Irish W |                     |                |            |                  |              |                  |                     |
| <b>Method:</b><br>Cable Percuss | .i       |                        |                       |                                |         | N                 | 1       | Representative:     |                |            |                  | Sca          | ale:             | 1:50                |
|                                 | sive     |                        |                       |                                | _       |                   | 1       | yrne Looby          |                |            |                  | Dr           | iller:           | JO'SB               |
| <b>Plant:</b><br>Dando 1500     |          |                        |                       |                                | Ground  | d Level:          | Dates:  | 21/09/2016 07/00    | /2016          |            |                  | 10           | gger:            | ш                   |
| Depth Depth                     | Sample / | Casing                 | Water                 |                                | Level   | mOD  Depth (m)    |         | 31/08/2016 - 07/09, |                |            |                  |              | _                | $\neg$              |
| (m)                             | Tests    | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Field Records                  | (mOD)   | (Thickness)       | Legend  | Description         |                |            |                  | Water        | Backfi           | iII                 |
| 20.00 - 20.08                   | SPT (C)  |                        |                       | 25 (31 for 75mm/25<br>for 0mm) |         | -<br>-            |         | End of borehole at  | 20.000m        |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         |                   |         |                     |                |            |                  |              |                  | 20.5                |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 20.5                |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | _                 |         |                     |                |            |                  |              |                  | 21.0 —              |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | <del>-</del><br>- |         |                     |                |            |                  |              |                  | 21.5 —              |
|                                 |          |                        |                       |                                |         |                   |         |                     |                |            |                  |              |                  | ]                   |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 22.0 —              |
|                                 |          |                        |                       |                                |         | -<br>-            |         |                     |                |            |                  |              |                  | 1 1                 |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 22.5 —              |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | _                 |         |                     |                |            |                  |              |                  | 23.0 —              |
|                                 |          |                        |                       |                                |         | -<br>-            |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 23.5                |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | -<br>-            |         |                     |                |            |                  |              |                  | 24.0 —              |
|                                 |          |                        |                       |                                |         |                   |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 24.5 —              |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 1 3                 |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 25.0 —              |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 25.5                |
|                                 |          |                        |                       |                                |         | <del>-</del>      |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 26.0                |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | <del>-</del><br>- |         |                     |                |            |                  |              |                  | 7.5                 |
|                                 |          |                        |                       |                                |         |                   |         |                     |                |            |                  |              |                  | 26.5 —<br>—         |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 27.0 —              |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | _                 |         |                     |                |            |                  |              |                  | 27.5 —              |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | ]                   |
|                                 |          |                        |                       |                                |         | <u>-</u>          |         |                     |                |            |                  |              |                  | 28.0 —              |
|                                 |          |                        |                       |                                |         | _                 |         |                     |                |            |                  |              |                  | ]                   |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  | 28.5 —<br>—         |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | _                 |         |                     |                |            |                  |              |                  | 29.0 —              |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | _                 |         |                     |                |            |                  |              |                  | 29.5 —              |
|                                 |          |                        |                       |                                |         | <del>-</del>      |         |                     |                |            |                  |              |                  |                     |
|                                 |          |                        |                       |                                |         | -                 |         |                     |                |            |                  | +            |                  | += $1$              |
| Remarks                         |          |                        |                       |                                |         | ı                 |         |                     |                | Added      |                  |              | - Gener          |                     |
|                                 |          |                        |                       |                                |         |                   |         |                     | 1.60           | To (m)     | Struck at (m) Ca | oring to (m) | Time (min)<br>20 | Rose to (m)<br>3.90 |
|                                 |          |                        |                       |                                |         |                   |         |                     | Cacina         | Details    | Ch               | iselling     | Details          |                     |
|                                 |          |                        |                       |                                |         |                   |         |                     |                | Diam (mm)  | From (m)         | To (n        | n) Tim           | ne (hh:mm)          |
|                                 |          |                        |                       |                                |         |                   |         |                     | 10.70<br>20.00 | 200<br>150 | 1.00             | 1.90         |                  | 04.30               |

|                            |                   |                        |                       |                    | Project        |                          |                                        | t Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Во            | rehole                   | No.:             |
|----------------------------|-------------------|------------------------|-----------------------|--------------------|----------------|--------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|------------------|
|                            | CAL               | IC                     | E١                    | MAY                | 16-502         | 7                        | Arklow                                 | Sewerage Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | BH1                      | 5                |
|                            | CAC               | –G                     | ΕO                    | <b>VAY</b><br>TECH | Coordi         | nates:                   | Client:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S             | heet 1                   | of 3             |
|                            |                   |                        |                       |                    |                | Е                        | Irish W                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |                          |                  |
| Method:                    |                   |                        |                       |                    |                |                          | Client's                               | s Representative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sca           | ale: 1                   | :50              |
| Cable Percuss              | ion               |                        |                       |                    |                | N                        | Arup B                                 | yrne Looby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dr            | iller: Jo                | OSB              |
| Plant:                     |                   |                        |                       |                    | Ground         | d Level:                 | Dates:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | -                |
| Dando 1500                 |                   |                        |                       |                    |                | mOD                      |                                        | 18/08/2016 - 25/08/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | gger: A                  | .G               |
| Depth<br>(m)               | Sample /<br>Tests | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Field Records      | Level<br>(mOD) | Depth (m)<br>(Thickness) | Legend                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Water         | Backfill                 |                  |
| 0.05 - 0.50                | B1                |                        |                       |                    | , ,            | (Thickness)<br>(0.05)    | ×                                      | Concrete slab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ┖             |                          | =                |
| 0.05 - 0.50                | D2                |                        |                       |                    |                |                          | ××                                     | Loose light brown silty slightly silty SAND and GRAVEL with occasional shell fragments. Low cobble content. Gravel angular to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                          | 1 3              |
| 0.50 - 1.20                | B3                |                        |                       |                    |                | -                        | ×                                      | subrounded medium to coarse. Cobbles angular sandstone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                          | 0.5 —            |
| 0.50 - 1.20                | D4                |                        |                       |                    |                | -                        | ×                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
|                            |                   |                        |                       |                    |                | (1.95)                   | × ^ ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 1.0 -            |
| 1.20 - 2.00                | B5                |                        |                       |                    |                | - ' - '                  | × × ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 1 1              |
| 1.20 - 2.00<br>1.20 - 1.65 | D6<br>SPT (S)     |                        |                       | N=5 (1,2/2,1,1,1)  |                |                          | ×· × ×                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 1.5              |
| 1.20 1.05                  | N=5               |                        |                       | (1,2,2,1,1,1)      |                | -                        | × × ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | =                |
|                            |                   |                        |                       |                    |                | -                        | ×. ×. ×                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
| 2.00 - 3.00<br>2.00 - 3.00 | B7<br>D8          |                        |                       |                    |                | - 2.00<br>-              | x × x                                  | Medium dense dark grey brown very silty very gravelly fine SAND with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\preceq$     |                          | 2.0 —            |
| 2.00 - 2.45                | SPT (S)           |                        |                       | N=26 (5,7/5,7,8,6) |                | -                        | x × x                                  | rootlets and organic odour. Gravel subangular to rounded, medium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                          |                  |
| 2.10                       | N=26<br>W9        |                        |                       |                    |                | (1.00)                   | × × ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 2.5              |
|                            | "                 |                        |                       |                    |                | -                        | ×××                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
| 3.00 - 4.50                | B11               |                        |                       |                    |                | -<br>- 3.00              | ×××                                    | Land have the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the se |               |                          | 3.0 —            |
| 3.00 - 4.50                | U10               |                        |                       | N 6 /2 2/2 4 4 4   |                | <del>-</del><br>-        | ××                                     | Loose brown silty gravelly fine SAND. Gravel subrounded to rounded fine to medium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                          |                  |
| 3.00 - 3.45                | SPT (S)<br>N=6    |                        |                       | N=6 (2,2/3,1,1,1)  |                | -                        | ×××                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 1                |
|                            |                   |                        |                       |                    |                |                          | ×                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 3.5 —            |
|                            |                   |                        |                       |                    |                | (1.50)                   | × ^ ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
| 4.00 - 4.45                | SPT (S)<br>N=19   |                        |                       | N=19 (4,4/5,4,5,5) |                | -                        | x × ×                                  | Below 4.0m: Medium dense.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                          | 4.0 —            |
|                            | N-19              |                        |                       |                    |                | -                        | × × ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
| 4.50 - 5.60                | B12               |                        |                       |                    |                | 4.50                     | × × ×                                  | Medium dense, locally very loose, grey and brown silty gravelly fine to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -             |                          | 4.5 —            |
| 4.50 - 5.60                | D13               |                        |                       |                    |                | _                        | $\times^{^{\sim}}\times$               | coarse SAND with occasional shell fragments. Gravel subangular to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                          | 1 3              |
| 5.00 - 5.45                | SPT (C)           |                        |                       | N=16 (5,4/2,5,5,4) |                | -                        | $\times^{\times} \times$               | rounded fine to coarse, mixed lithologies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                          | 5.0 —            |
|                            | N=16              |                        |                       |                    |                | -                        | ×××××                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
|                            |                   |                        |                       |                    |                | -                        | x × x                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 5.5              |
| 5.60 - 7.00                | B14               |                        |                       |                    |                | -                        | ×××<br>×××                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 5.5              |
| 5.60 - 7.00                | D15               |                        |                       |                    |                | -                        | × × ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
|                            |                   |                        |                       |                    |                | -                        | ×××                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 6.0 —            |
|                            |                   |                        |                       |                    |                | -                        | ××                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
|                            |                   |                        |                       |                    |                | <u> </u>                 | ××                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 6.5              |
|                            |                   |                        |                       |                    |                | -                        | ×××                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
|                            |                   |                        |                       |                    |                | (4.90)                   | ×                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 7.0 —            |
|                            |                   |                        |                       |                    |                | <del>-</del>             | ×  × ×                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
| 750.050                    | D16               |                        |                       |                    |                | Ē                        | × ×                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | =                |
| 7.50 - 8.50<br>7.50 - 8.50 | B16<br>B17        |                        |                       |                    |                | _                        | × × ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 7.5 —            |
| 7.50 - 7.95                | SPT (S)<br>N=19   |                        |                       | N=19 (3,5/4,6,5,4) |                | -                        | × × ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | =                |
|                            | 11-13             |                        |                       |                    |                | <del>-</del>             | × × ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 8.0 —            |
|                            |                   |                        |                       |                    |                | -                        | $\times$ $\times$ $\times$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
| 8.50 - 9.40                | B18               |                        |                       |                    |                |                          | $\times^{\times}\times^{\wedge}\times$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 8.5              |
| 8.50 - 9.40                | D19               |                        |                       |                    |                | -                        | × × ×                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
| 9.00 - 9.45                | SPT (S)           |                        |                       | N=17 (3,4/5,5,4,3) |                | <del>-</del>             | ×××                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          | 9.0 —            |
|                            | N=17              |                        |                       | 19-08-2016         |                | -<br>-                   | ×××                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
| 9.40 - 10.00               | B20               | 9.00                   | 2.50                  | 18-08-2016         |                | 9.40                     | ××                                     | Stiff grey sandy SILT/CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -             |                          |                  |
| 9.40 - 10.00               | D21               |                        |                       |                    |                | (0.60)                   | X_X_                                   | 6,, 6, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                          | 9.5 —            |
|                            |                   |                        |                       |                    |                | (0.00)                   | ×_×                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                          |                  |
| 10.00 - 10.50              | B22               |                        |                       |                    |                | 10.00                    |                                        | Continued on Next Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                          |                  |
| Remarks                    |                   |                        |                       |                    |                |                          |                                        | Water Added   Water S<br>  From (m)   To (m)   Struck at (m)   Casing<br>  1.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20   2.20 | to (m)        | - Genera<br>Time (min) R |                  |
|                            |                   |                        |                       |                    |                |                          |                                        | 1.20   2.00   2.20   2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -             | 20                       | 2.10             |
|                            |                   |                        |                       |                    |                |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Details                  |                  |
|                            |                   |                        |                       |                    |                |                          |                                        | 10.50 200 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To (n<br>0.05 |                          | (hh:mm)<br>03:00 |
|                            |                   |                        |                       |                    |                |                          |                                        | 20.00 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                          |                  |

|                                |                   |       |       |                                   | Projec         |                          |                                        | t Name:                                                                     | Во     |        | e No.    |
|--------------------------------|-------------------|-------|-------|-----------------------------------|----------------|--------------------------|----------------------------------------|-----------------------------------------------------------------------------|--------|--------|----------|
|                                | CAL               | JS    | E١    | WAY                               | 16-502         |                          |                                        | Sewerage Scheme                                                             |        | ВН     | 16       |
| 585                            |                   | −G    | ΕO    | <b>VAY</b><br>TECH                | Coordi         |                          | Client:                                |                                                                             | S      | heet   | 2 of 3   |
| Method:                        |                   |       |       |                                   |                | E                        | Irish W                                | s Representative:                                                           | Sc     | ale:   | 1.50     |
| Cable Percuss                  | sion              |       |       |                                   |                | N                        |                                        | yrne Looby                                                                  |        |        |          |
| Plant:                         |                   |       |       |                                   | Groun          | d Level:                 | Dates:                                 |                                                                             | Dr     | iller: | JOSB     |
| Dando 1500                     |                   |       |       |                                   |                | mOD                      |                                        | 18/08/2016 - 25/08/2016                                                     | Lo     | gger:  | AG       |
| Depth<br>(m)                   | Sample ,<br>Tests | Depth | Depth | Field Records                     | Level<br>(mOD) | Depth (m)<br>(Thickness) | Legend                                 | Description                                                                 | Water  | Back   | fill     |
| 10.00 - 10.50                  | D23               | (m)   | (m)   |                                   | (IIIOD)        | -                        | ×××                                    | Medium dense grey and brown slightly silty SAND and GRAVEL. Sand fine       | _      |        |          |
|                                |                   |       |       |                                   |                |                          | ` * * .<br>. * * *                     | to coarse. Gravel angular to subrounded fine to medium.                     |        |        |          |
| 10.50 - 11.00<br>10.50 - 11.00 | B24<br>D25        |       |       |                                   |                | - (1.00)                 | ×××                                    |                                                                             |        |        | 10.5     |
| 10.50 - 10.95                  | SPT (C)<br>N=24   | 10.5  | 0.80  | N=24 (7,7/6,7,5,6)<br>22-08-2016  |                | -                        | ×××                                    |                                                                             |        |        |          |
|                                | 14-24             | 0     |       |                                   |                | - 11.00<br>-             |                                        | Very stiff grey brown slightly sandy slightly gravelly CLAY/SILT. Gravel is | 1      |        | 11.0 -   |
| 1.00 - 12.50                   | B26               | 10.5  | 2.10  | 19-08-2016                        |                |                          |                                        | subangular to subrounded, fine.                                             |        |        |          |
| 1.00 - 12.50                   | D27               |       |       |                                   |                | -                        |                                        |                                                                             |        |        | 11.5     |
|                                |                   |       |       |                                   |                |                          |                                        |                                                                             |        |        |          |
| .2.00 - 12.45                  | SPT (S)<br>N=30   |       |       | N=30 (5,6/6,7,8,9)                |                | -                        |                                        |                                                                             |        |        | 12.0 -   |
|                                | 30                |       |       |                                   |                | -                        |                                        |                                                                             |        |        |          |
| .2.50 - 13.50<br>.2.50 - 13.50 | B28<br>D29        |       |       |                                   |                | -                        |                                        |                                                                             |        |        | 12.5     |
| 2.30 - 13.30                   |                   |       |       |                                   |                |                          |                                        |                                                                             |        |        |          |
|                                |                   |       |       |                                   |                | -                        |                                        |                                                                             |        |        | 13.0 -   |
|                                |                   |       |       |                                   |                | -                        |                                        |                                                                             |        |        |          |
| 3.50 - 14.00                   | U30               |       |       |                                   |                | -                        |                                        |                                                                             |        |        | 13.5     |
|                                |                   |       |       |                                   |                | -                        |                                        |                                                                             |        |        |          |
| 4.00 - 15.50                   | B31               |       |       |                                   |                | _                        |                                        |                                                                             |        |        | 14.0     |
| 4.00 - 15.50                   | D32               | 13.5  | 3.20  | 22-08-2016                        |                | -                        |                                        |                                                                             |        |        |          |
|                                |                   | 0     |       |                                   |                | (7.00)                   |                                        |                                                                             |        |        | 14.5     |
|                                |                   |       |       |                                   |                | -                        |                                        |                                                                             |        |        |          |
|                                |                   |       | 0.00  | 24-08-2016                        |                | _                        |                                        |                                                                             |        |        | 15.0 -   |
|                                |                   | 0     |       |                                   |                |                          |                                        |                                                                             |        |        |          |
| 5.50 - 17.00                   | B33               |       |       |                                   |                | -                        |                                        |                                                                             |        |        | 15.5     |
| .5.50 - 17.00<br>.5.50 - 15.95 | D34<br>SPT (S)    |       |       | N=21 (5,2/3,5,6,7)                |                | -                        |                                        |                                                                             |        |        |          |
|                                | N=21              |       |       |                                   |                | -                        |                                        |                                                                             |        |        | 16.0 -   |
|                                |                   |       |       |                                   |                |                          |                                        |                                                                             |        |        |          |
|                                |                   |       |       |                                   |                | -                        |                                        |                                                                             |        |        | 16.5     |
|                                |                   |       |       |                                   |                |                          |                                        |                                                                             |        |        |          |
| 7.00 - 18.00                   | B35               |       |       |                                   |                | -                        |                                        |                                                                             |        |        | 17.0 -   |
| .7.00 - 18.00<br>.7.00 - 17.45 | D36<br>SPT (S)    |       |       | N=49                              |                | -                        |                                        |                                                                             |        |        |          |
|                                | N=49              |       |       | (8,7/12,7,14,16)                  |                | -                        |                                        |                                                                             |        |        | 17.5     |
|                                |                   |       |       |                                   |                | -                        |                                        |                                                                             |        |        |          |
| 8.00 - 19.50                   | B37               |       |       |                                   |                | -<br>- 18.00             |                                        | Medium dense to dense grey and brown slightly silty slightly sandy          | -      |        | 18.0     |
| 8.00 - 19.50                   | D38               | 18.0  | 2.00  | 25-08-2016                        |                |                          | ×                                      | GRAVEL with high cobble content. Gravel subangular to rounded fine to       |        |        |          |
|                                |                   | 0     |       |                                   |                | -                        | ו••                                    | coarse. Cobbles subangular to subrounded mixed lithologies.                 |        |        | 18.5     |
| 8.50 - 18.95                   | SPT (C)           | 0     | 2.50  | 24-08-2016<br>N=28 (6,6/5,6,7,10) |                | -                        | ************************************** |                                                                             |        |        |          |
|                                | N=28              |       |       |                                   |                | -<br>- (2.50)            | ************************************** |                                                                             |        |        | 19.0     |
|                                |                   |       |       |                                   |                |                          | ************************************** |                                                                             |        |        |          |
| 9.50 - 20.00                   | B39               |       |       |                                   |                | -                        | ************************************** |                                                                             |        |        | 19.5     |
| 9.50 - 20.00<br>9.50 - 19.95   | D40<br>SPT (C)    |       |       | N=45 (5,5/6,6,8,25)               |                | <u> </u>                 |                                        |                                                                             |        |        |          |
| .5.50 - 15.55                  | N=45              |       |       | 14-45 (5,5/0,0,6,25)              |                | -                        | ************************************** |                                                                             |        |        |          |
| emarks                         |                   |       |       |                                   |                |                          |                                        | Continued on Next Page Water Added Water S                                  | Strike | - Gene | ral      |
| emai K5                        |                   |       |       |                                   |                |                          |                                        | From (m) To (m) Struck at (m) Casin                                         |        |        |          |
|                                |                   |       |       |                                   |                |                          |                                        |                                                                             | 17:    |        |          |
|                                |                   |       |       |                                   |                |                          |                                        | To (m) Diam (mm) From (m)                                                   | To (n  |        | me (hh:m |
|                                |                   |       |       |                                   |                |                          |                                        | 10.50 200 0.00<br>20.00 150                                                 | 0.05   |        | 03:00    |
|                                |                   |       |       |                                   |                |                          |                                        |                                                                             |        |        |          |

| 200           |                   |                        |                       |                    | Project        |                          | Project             |                                             | Во                | rehole             |             |
|---------------|-------------------|------------------------|-----------------------|--------------------|----------------|--------------------------|---------------------|---------------------------------------------|-------------------|--------------------|-------------|
|               | CAL               | JS                     | E١                    | VAY                | 16-502         |                          |                     | Sewerage Scheme                             | $\perp$           | BH1                | 6           |
|               |                   | -G                     | ΕO                    | <b>VAY</b><br>TECH | Coordi         |                          | Client:<br>Irish Wa | ater                                        | S                 | heet 3             | of 3        |
| Method:       |                   |                        |                       |                    |                | E                        | 1                   | s Representative:                           | - Sc:             | ale: 1             | .50         |
| Cable Percuss | sion              |                        |                       |                    |                | N                        | 1                   | yrne Looby                                  |                   |                    |             |
| Plant:        |                   |                        |                       |                    | Ground         | d Level:                 | Dates:              | ,                                           |                   | iller: J           |             |
| Dando 1500    |                   |                        |                       |                    |                | mOD                      |                     | 18/08/2016 - 25/08/2016                     | _                 | gger: A            | ۸G          |
| Depth<br>(m)  | Sample /<br>Tests | Casing<br>Depth<br>(m) | Water<br>Depth<br>(m) | Field Records      | Level<br>(mOD) | Depth (m)<br>(Thickness) | Legend              | Description                                 | Water             | Backfil            | ı           |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    |             |
|               |                   | 20.0                   | 2 50                  | 25 09 2016         |                | 30.50                    | ×                   |                                             |                   |                    | 20.5        |
|               |                   | 0                      | 3.50                  | 25-08-2016         |                | 20.50                    |                     | End of borehole at 20.500m                  |                   |                    | 20.5        |
|               |                   |                        |                       |                    |                |                          |                     |                                             |                   |                    | 21.0 —      |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | _           |
|               |                   |                        |                       |                    |                | [                        |                     |                                             |                   |                    | 21.5        |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | =           |
|               |                   |                        |                       |                    |                | _                        |                     |                                             |                   |                    | 22.0 —      |
|               |                   |                        |                       |                    |                |                          |                     |                                             |                   |                    |             |
|               |                   |                        |                       |                    |                | <u>-</u>                 |                     |                                             |                   |                    | 22.5        |
|               |                   |                        |                       |                    |                | [                        |                     |                                             |                   |                    |             |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | 23.0 —      |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | -           |
|               |                   |                        |                       |                    |                |                          |                     |                                             |                   |                    | 23.5        |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | -           |
|               |                   |                        |                       |                    |                | _                        |                     |                                             |                   |                    | 24.0        |
|               |                   |                        |                       |                    |                |                          |                     |                                             |                   |                    |             |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | 24.5 —      |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    |             |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | 25.0 —      |
|               |                   |                        |                       |                    |                | -<br>-                   |                     |                                             |                   |                    | -           |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | 25.5 —      |
|               |                   |                        |                       |                    |                | _                        |                     |                                             |                   |                    | 26.0 —      |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | 20.0        |
|               |                   |                        |                       |                    |                |                          |                     |                                             |                   |                    | 26.5        |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | -           |
|               |                   |                        |                       |                    |                | [                        |                     |                                             |                   |                    | 27.0        |
|               |                   |                        |                       |                    |                | <u> </u>                 |                     |                                             |                   |                    |             |
|               |                   |                        |                       |                    |                | <u> </u>                 |                     |                                             |                   |                    | 27.5 —      |
|               |                   |                        |                       |                    |                | [                        |                     |                                             |                   |                    |             |
|               |                   |                        |                       |                    |                | <u> </u>                 |                     |                                             |                   |                    | 28.0 —      |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    |             |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | 28.5 —      |
|               |                   |                        |                       |                    |                | <u> </u>                 |                     |                                             |                   |                    | =           |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | 29.0 —      |
|               |                   |                        |                       |                    |                | <u> </u>                 |                     |                                             |                   |                    |             |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    | 29.5 —      |
|               |                   |                        |                       |                    |                | -                        |                     |                                             |                   |                    |             |
|               |                   |                        |                       |                    |                |                          |                     | <b>1 1</b>                                  |                   |                    |             |
| Remarks       |                   |                        |                       |                    |                |                          |                     | From (m) To (m) Struck at (m) Cas           | sing to (m)       |                    | lose to (m) |
|               |                   |                        |                       |                    |                |                          |                     | 1.20 2.00 2.20                              | 2.20              | 20                 | 2.10        |
|               |                   |                        |                       |                    |                |                          |                     | Casing Details Ch To (m) Diam (mm) From (m) | iselling<br>To (n | Details<br>n) Time | (hh:mm)     |
|               |                   |                        |                       |                    |                |                          |                     | 10.50 200 0.00<br>20.00 150                 | 0.05              | ,                  | 03:00       |





Appendix B

**Geotechnical Laboratory Test Results** 



### LABORATORY REPORT



4043

Contract Number: PSL16/4906

Report Date: 11 November 2016

Client's Reference: 16-5027

Client Name: Causeway Geotech

8 Drumahiskey Road

Ballymoney Co.Antrim BT53 7QL

For the attention of: Stephen Watson

Contract Title: Arklow

Date Received: 20/10/2016
Date Commenced: 20/10/2016
Date Completed: 11/11/2016

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

#### Checked and Approved Signatories:

R Gunson A Watkins R Berriman (Director) (Director) (Quality Manager)

D Lambe S Royle W Allen (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR

tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

# **SUMMARY OF LABORATORY SOIL DESCRIPTIONS**

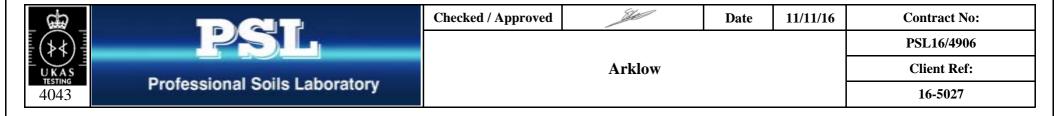
| Hole<br>Number | Sample<br>Number | Sample<br>Type | Top<br>Depth<br>m | Base<br>Depth<br>m | Description of Sample                                                           |
|----------------|------------------|----------------|-------------------|--------------------|---------------------------------------------------------------------------------|
| BH12           | 2                | В              | 1.20              |                    | Dark brown very gravelly very sandy very silty CLAY with some organic material. |
| BH12           | 3                | D              | 2.00              |                    | Brown very sandy silty GRAVEL.                                                  |
| BH12           | 5                | В              | 3.00              |                    | Brown very sandy slightly silty GRAVEL.                                         |
| BH12           | 6                | В              | 4.00              |                    | Brown very sandy silty GRAVEL.                                                  |
| BH12           | 7                | В              | 5.00              |                    | Brown gravelly silty SAND.                                                      |
| BH12           | 12               | В              | 7.50              |                    | Brown slightly gravelly silty SAND.                                             |
| BH12           | 14               | В              | 9.00              |                    | Brown SAND.                                                                     |
| BH13           | 1                | В              | 1.00              |                    | Brown sandy slightly clayey silty GRAVEL.                                       |
| BH13           | 4                | В              | 3.00              |                    | Brown sandy silty GRAVEL.                                                       |
| BH13           | 5                | В              | 4.00              |                    | Brown slightly silty SAND & GRAVEL.                                             |
| BH13           | 8                | В              | 6.50              |                    | Brown slightly gravelly slightly silty SAND.                                    |
| BH13           | 15               | В              | 10.00             |                    | Brown slightly gravelly SAND.                                                   |
| BH14           | 3                | В              | 1.60              |                    | Brown sandy slightly silty GRAVEL.                                              |
| BH14           | 6                | В              | 4.00              |                    | Brown very sandy GRAVEL.                                                        |
| BH14           | 8                | В              | 5.40              |                    | Brown gravelly SAND.                                                            |
| BH14           | 13               | В              | 9.40              |                    | Brown gravelly sandy CLAY.                                                      |
| BH14           | 15               | В              | 11.00             |                    | Brown gravelly sandy CLAY.                                                      |
| BH15D          | 1                | В              | 0.20              | 1.60               | Brown sandy slightly silty GRAVEL with cobbles.                                 |
| BH15D          | 3                | В              | 1.60              | 2.60               | Brown very sandy GRAVEL.                                                        |

| œ,                 | BAT                           | Checked / Approved | Jul    | Date | 11/11/16 | Contract No: |  |  |  |
|--------------------|-------------------------------|--------------------|--------|------|----------|--------------|--|--|--|
| (><)               |                               |                    |        |      |          | PSL16/4906   |  |  |  |
| U K A S<br>TESTING | Drafassianal Saila Laboratory |                    | Arklow |      |          |              |  |  |  |
| 4043               | Professional Soils Laboratory |                    |        |      |          | 16-5027      |  |  |  |

# SUMMARY OF LABORATORY SOIL DESCRIPTIONS

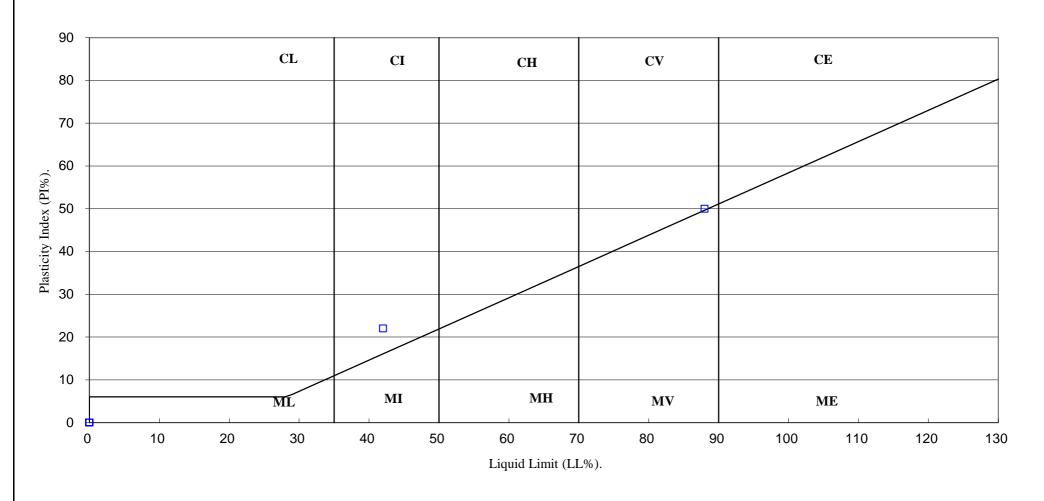
| Hole<br>Number | Sample<br>Number | Sample<br>Type | Top<br>Depth<br>m | Base<br>Depth<br>m | Description of Sample                                 |
|----------------|------------------|----------------|-------------------|--------------------|-------------------------------------------------------|
| BH15D          | 7                | В              | 4.10              | 5.60               | Brown sandy slightly silty GRAVEL.                    |
| BH15D          | 13               | В              | 8.50              | 10.00              | Brown slightly gravelly silty SAND.                   |
| BH15D          | 18               | В              | 10.80             | 11.30              | Brown slightly sandy very silty CLAY.                 |
| BH15D          | 24               | В              | 13.50             | 15.00              | Brown gravelly sandy CLAY.                            |
| BH15D          | 28               | U              | 16.00             | 16.45              | Firm brown slightly gravelly sandy very silty CLAY.   |
| BH16           | 3                | В              | 0.50              | 1.20               | Brown very gravelly slightly silty SAND with cobbles. |
| BH16           | 5                | В              | 1.20              | 2.00               | Brown very gravelly silty SAND.                       |
| BH16           | 7                | В              | 2.00              | 3.00               | Brown very gravelly silty SAND.                       |
| BH16           | 11               | В              | 3.00              | 4.50               | Brown slightly gravelly silty SAND.                   |
| BH16           | 14               | В              | 5.60              | 7.00               | Grey slightly gravelly SAND.                          |
| BH16           | 16               | В              | 7.50              | 8.50               | Grey gravelly silty SAND.                             |
| BH16           | 19               | D              | 8.50              | 9.40               | Brown gravelly SAND.                                  |
| BH16           | 24               | В              | 10.50             | 11.00              | Brown gravelly SAND.                                  |
| BH16           | 28               | В              | 12.50             | 13.50              | Brown slightly gravelly sandy CLAY.                   |
|                |                  |                |                   |                    |                                                       |
|                |                  |                |                   |                    |                                                       |
|                |                  |                |                   |                    |                                                       |
|                |                  |                |                   |                    |                                                       |
|                |                  |                |                   |                    |                                                       |

| CL)                | BAL                            | Checked / Approved | <u>Juli</u> | Date | 11/11/16 | Contract No: |
|--------------------|--------------------------------|--------------------|-------------|------|----------|--------------|
| (≯∢)               |                                |                    |             |      |          | PSL16/4906   |
| U K A S<br>TESTING | Dyefoccional Caila I abayetawy |                    | Client Ref: |      |          |              |
| 4043               | Professional Soils Laboratory  |                    |             |      |          | 16-5027      |


## **SUMMARY OF SOIL CLASSIFICATION TESTS**

(BS1377: PART 2: 1990)

|        |        |        |       |       | Moisture   | Linear     | Particle          | Liquid       | Plastic    | Plasticity | Passing  |                             |
|--------|--------|--------|-------|-------|------------|------------|-------------------|--------------|------------|------------|----------|-----------------------------|
| Hole   | Sample | Sample | Top   | Base  | Content    | Shrinkage  | Density           | Limit        | Limit      | Index      | .425mm   | Remarks                     |
| Number | Number | Type   | Depth | Depth | <b>%</b>   | %          | Mg/m <sup>3</sup> | %            | %          | %          | <b>%</b> |                             |
|        |        |        | m     | m     | Clause 3.2 | Clause 6.5 | Clause 8.2        | Clause 4.3/4 | Clause 5.3 | Clause 5.4 |          |                             |
| BH12   | 2      | В      | 1.20  |       | 40         |            |                   | 88           | 38         | 50         | 47       | Very high plasticity CV.    |
| BH12   | 3      | D      | 2.00  |       | 12         |            |                   |              |            |            |          |                             |
| BH12   | 5      | В      | 3.00  |       | 5.0        |            |                   |              | NP         |            |          |                             |
| BH12   | 7      | В      | 5.00  |       | 16         |            |                   |              |            |            |          |                             |
| BH12   | 12     | В      | 7.50  |       | 21         |            |                   |              |            |            |          |                             |
| BH12   | 14     | В      | 9.00  |       | 22         |            |                   |              |            |            |          |                             |
| BH13   | 1      | В      | 1.00  |       | 10         |            |                   |              | NP         |            |          |                             |
| BH13   | 5      | В      | 4.00  |       | 11         |            |                   |              | NP         |            |          |                             |
| BH13   | 8      | В      | 6.50  |       | 14         |            |                   |              |            |            |          |                             |
| BH13   | 15     | В      | 10.00 |       | 16         |            |                   |              |            |            |          |                             |
| BH14   | 3      | В      | 1.60  |       | 4.6        |            |                   |              | NP         |            |          |                             |
| BH14   | 6      | В      | 4.00  |       | 5.2        |            |                   |              |            |            |          |                             |
| BH14   | 8      | В      | 5.40  |       | 12         |            |                   |              |            |            |          |                             |
| BH14   | 13     | В      | 9.40  |       | 25         |            |                   | 42           | 20         | 22         | 82       | Intermediate plasticity CI. |
| BH14   | 15     | В      | 11.00 |       | 23         |            |                   |              |            |            |          |                             |
| BH15D  | 1      | В      | 0.20  | 1.60  | 5.4        |            |                   |              | NP         |            |          |                             |
| BH15D  | 3      | В      | 1.60  | 2.60  | 9.1        |            |                   |              |            |            |          |                             |
| BH15D  | 7      | В      | 4.10  | 5.60  | 8.2        |            |                   |              |            |            |          |                             |
| BH15D  | 13     | В      | 8.50  | 10.00 | 18         |            |                   |              |            |            |          |                             |


**SYMBOLS:** NP: Non Plastic

<sup>\*:</sup> Liquid Limit and Plastic Limit Wet Sieved.

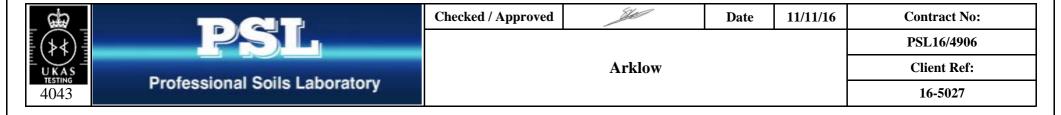


## PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

(BS5930:2015)

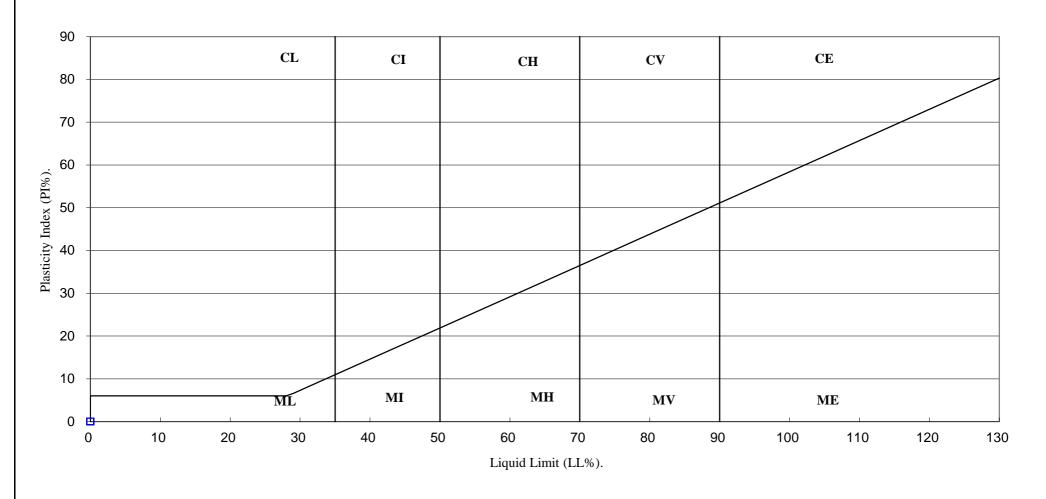


| cia)               |                               | Checked /Approved | Jill .  | Date | 11/11/16 | Contract No: |
|--------------------|-------------------------------|-------------------|---------|------|----------|--------------|
| (≯∢)               |                               |                   |         |      |          | PSL16/4906   |
| U K A S<br>TESTING | Budanianal Calla Laboratana   |                   | Arklow  |      |          | Client Ref:  |
| 4043               | Professional Soils Laboratory |                   | 16-5027 |      |          |              |


## **SUMMARY OF SOIL CLASSIFICATION TESTS**

(BS1377: PART 2: 1990)

|        |        |        |       |       | Moisture   | Linear     | Particle          | Liquid       | Plastic    | Plasticity | Passing  |         |
|--------|--------|--------|-------|-------|------------|------------|-------------------|--------------|------------|------------|----------|---------|
| Hole   | Sample | Sample | Top   | Base  | Content    | Shrinkage  | Density           | Limit        | Limit      | Index      | .425mm   | Remarks |
| Number | Number | Type   | Depth | Depth | %          | %          | Mg/m <sup>3</sup> | %            | %          | %          | <b>%</b> |         |
|        |        |        | m     | m     | Clause 3.2 | Clause 6.5 | Clause 8.2        | Clause 4.3/4 | Clause 5.3 | Clause 5.4 |          |         |
| BH15D  | 18     | В      | 10.80 | 11.30 | 30         |            |                   |              |            |            |          |         |
| BH15D  | 24     | В      | 13.50 | 15.00 | 8.6        |            |                   |              |            |            |          |         |
| BH16   | 3      | В      | 0.50  | 1.20  | 9.1        |            |                   |              | NP         |            |          |         |
| BH16   | 5      | В      | 1.20  | 2.00  | 16         |            |                   |              |            |            |          |         |
| BH16   | 7      | В      | 2.00  | 3.00  | 15         |            |                   |              | NP         |            |          |         |
| BH16   | 11     | В      | 3.00  | 4.50  | 16         |            |                   |              |            |            |          |         |
| BH16   | 14     | В      | 5.60  | 7.00  | 16         |            |                   |              |            |            |          |         |
| BH16   | 16     | В      | 7.50  | 8.50  | 15         |            |                   |              |            |            |          |         |
| BH16   | 19     | D      | 8.50  | 9.40  | 19         |            |                   |              |            |            |          |         |
| BH16   | 24     | В      | 10.50 | 11.00 | 8.9        |            |                   |              |            |            |          |         |
| BH16   | 28     | В      | 12.50 | 13.50 | 24         |            |                   |              |            |            |          |         |
|        |        |        |       |       |            |            |                   |              |            |            |          |         |
|        |        |        |       |       |            |            |                   |              |            |            |          |         |
|        |        |        |       |       |            |            |                   |              |            |            |          |         |
|        |        |        |       |       |            |            |                   |              |            |            |          |         |
|        |        |        |       |       |            |            |                   |              |            |            |          |         |
|        |        |        |       |       |            |            |                   |              |            |            |          |         |
|        |        |        |       |       |            |            |                   |              |            |            |          |         |
|        |        |        |       |       |            |            |                   |              |            |            |          |         |


**SYMBOLS:** NP: Non Plastic

<sup>\*:</sup> Liquid Limit and Plastic Limit Wet Sieved.



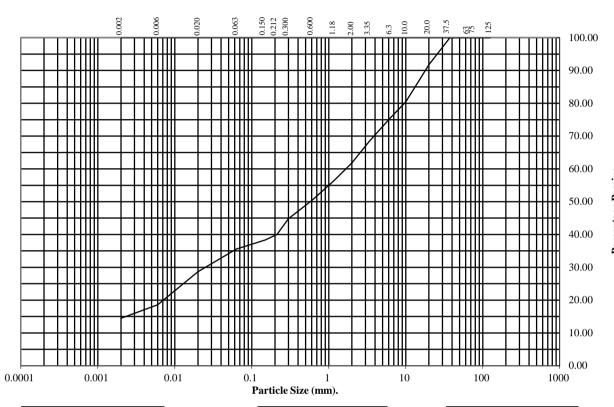
## PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

(BS5930:2015)



| cia)               |                               | Checked /Approved |  | Date | 11/11/16 | Contract No: |
|--------------------|-------------------------------|-------------------|--|------|----------|--------------|
| (≯∢)               |                               |                   |  |      |          | PSL16/4906   |
| U K A S<br>TESTING | Burface and Called about      | Arklow            |  |      |          | Client Ref:  |
| 4043               | Professional Soils Laboratory |                   |  |      |          | 16-5027      |

## PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: BH12 Top Depth (m): 1.20

Sample Number: 2 Base Depth(m):

Sample Type: B



| BS Test | Percentage |  |  |
|---------|------------|--|--|
| Sieve   | Passing    |  |  |
| 125     | 100        |  |  |
| 75      | 100        |  |  |
| 63      | 100        |  |  |
| 37.5    | 100        |  |  |
| 20      | 92         |  |  |
| 10      | 80         |  |  |
| 6.3     | 75         |  |  |
| 3.35    | 68         |  |  |
| 2       | 62         |  |  |
| 1.18    | 57         |  |  |
| 0.6     | 50         |  |  |
| 0.3     | 45         |  |  |
| 0.212   | 40         |  |  |
| 0.15    | 38         |  |  |
| 0.063   | 36         |  |  |

| Particle | Percentage |
|----------|------------|
| Diameter | Passing    |
| 0.02     | 29         |
| 0.006    | 19         |
| 0.002    | 14         |

| Soil     | Total      |
|----------|------------|
| Fraction | Percentage |
| G 111    | 0          |
| Cobbles  | 0          |
| Gravel   | 38         |
| Sand     | 26         |
| Silt     | 22         |
| Clay     | 14         |

Remarks:

See summary of soil descriptions.



| <u> PSL</u>                   |  |
|-------------------------------|--|
| Professional Soils Laboratory |  |

| Checked / Approved |
|--------------------|
|--------------------|

Sel

Date

11/11/16

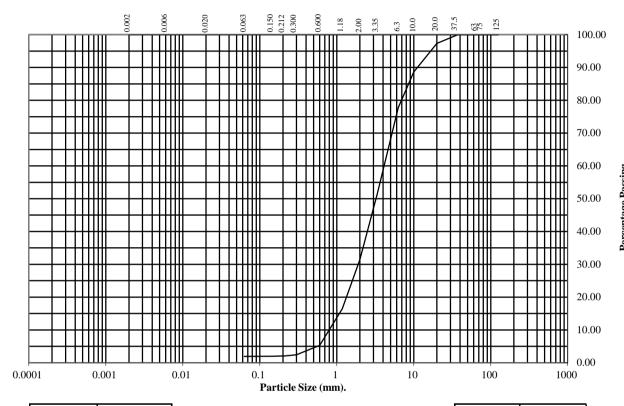
Contract No: PSL16/4906

Arklow

Client Ref: 16-5027

PSL005 Nov 15 Page of

## PARTICLE SIZE DISTRIBUTION TEST


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH12 Top Depth (m): 3.00

Sample Number: 5 Base Depth(m):

Sample Type: B



| BS Test | Percentage |  |  |
|---------|------------|--|--|
| Sieve   | Passing    |  |  |
| 125     | 100        |  |  |
| 75      | 100        |  |  |
| 63      | 100        |  |  |
| 37.5    | 100        |  |  |
| 20      | 97         |  |  |
| 10      | 89         |  |  |
| 6.3     | 78         |  |  |
| 3.35    | 51         |  |  |
| 2       | 31         |  |  |
| 1.18    | 16         |  |  |
| 0.6     | 5          |  |  |
| 0.3     | 2          |  |  |
| 0.212   | 2          |  |  |
| 0.15    | 2          |  |  |
| 0.063   | 2          |  |  |

| Soil                                   | Total              |
|----------------------------------------|--------------------|
| Fraction                               | Percentage         |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>69<br>29<br>2 |

Remarks:

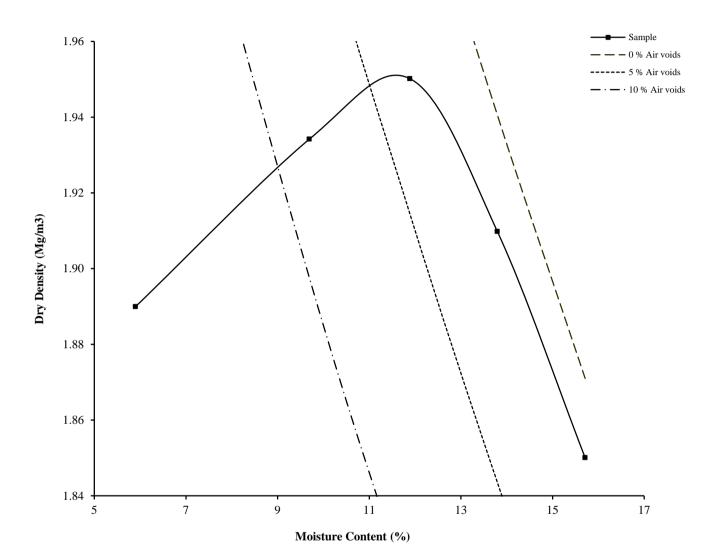
See summary of soil descriptions.



| <b>PSL</b>                    |  |
|-------------------------------|--|
| Professional Soils Laboratory |  |

| Checked / Approved | Date        | 11/11/16 | Contract No: |
|--------------------|-------------|----------|--------------|
|                    | PSL16/4906  |          |              |
|                    | Client Ref: |          |              |
|                    |             |          | 16 5027      |

PSL005 Nov 15 Page of


## DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377: Part 4: 1990

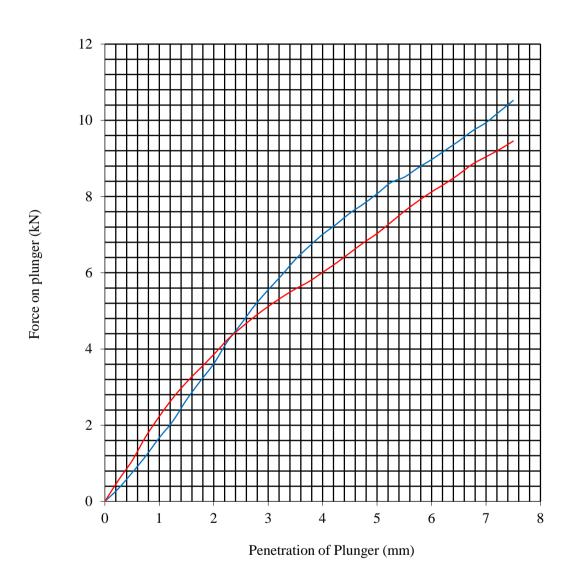
Hole Number: BH12 Top Depth (m): 4.00

Sample Number: 6 Base Depth (m):

Sample Type: B



| Initial Moisture Content:        |      | 5.9     | Method of Compaction:                   | 2.5Kg Rammer | Separate Samples |  |
|----------------------------------|------|---------|-----------------------------------------|--------------|------------------|--|
| Particle Density (Mg/m3):        | 2.65 | Assumed | Material Retained on 37.5 mm Test Sieve | 0            |                  |  |
| Maximum Dry Density (Mg/m3):     |      | 1.95    | Material Retained on 20.0 mm Test Sieve | 2            |                  |  |
| Optimum Moisture Content (%): 12 |      |         |                                         |              |                  |  |
| Remarks                          |      |         |                                         |              |                  |  |
| See summary of soil descriptions |      |         |                                         |              |                  |  |


| <u></u>            | PSL PSL                       | Checked / Approved | Checked / Approved Date 11/11/16 |  |  |  |  |  |
|--------------------|-------------------------------|--------------------|----------------------------------|--|--|--|--|--|
| (≯≮)               |                               |                    |                                  |  |  |  |  |  |
| U K A S<br>TESTING | Business Called abandons      |                    | Client Ref                       |  |  |  |  |  |
| 4043               | Professional Soils Laboratory |                    | 16-5027                          |  |  |  |  |  |

BS 1377 : Part 4 : 1990

Hole Number: BH12 Top Depth (m): 4.00

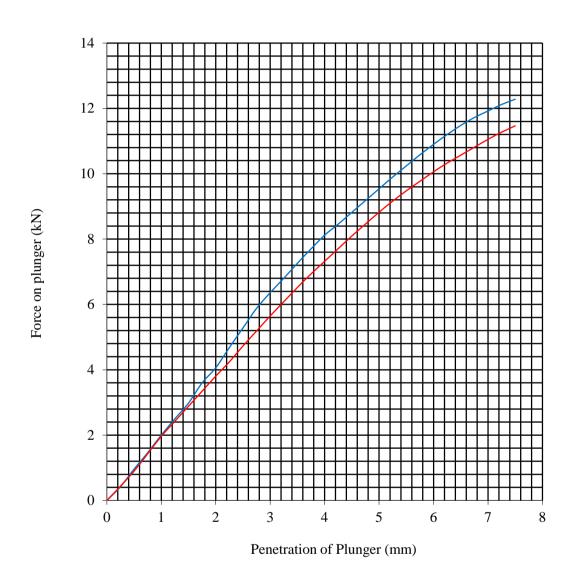
Sample Number: 6 Base Depth (m):

Sample Type: B



| Initial Sample Conditions                  |      | Sample Preparation |      | Final Moisture Content %                   |     | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------|--------------------------------------------|-----|----------------|------|
| Moisture Content:                          | 5.9  | Surcharge Kg:      | 4.20 | Sample Top                                 | 5.7 | Sample Top     | 40.4 |
| Bulk Density Mg/m3:                        | 2.00 | Soaking Time hrs   | 0    | Sample Bottom                              | 6.1 | Sample Bottom  | 35.1 |
| Dry Density Mg/m3:                         | 1.89 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |     |                |      |
| Percentage retained on 20mm BS test sieve: |      |                    | 0    |                                            |     |                |      |
| Compaction Conditions 2.5kg Ramme          |      | er                 |      |                                            |     |                |      |

- Top


| dia _              |                               | Checked / Approved | Jan 1940    | Date       | 11/11/16 | Contract No: |
|--------------------|-------------------------------|--------------------|-------------|------------|----------|--------------|
| (≯≮)               |                               |                    |             | PSL16/4906 |          |              |
| U K A S<br>TESTING | Businesis Calle Laboratore    |                    | Client Ref: |            |          |              |
| 4043               | Professional Soils Laboratory |                    | 16-5027     |            |          |              |

BS 1377: Part 4: 1990

Hole Number: BH12 Top Depth (m): 4.00

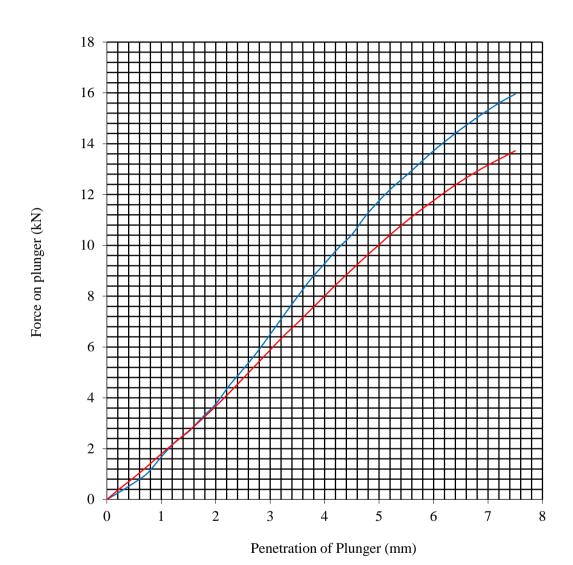
Sample Number: 6 Base Depth (m):

Sample Type: B



| Initial Sample Conditions Sample Conditions |                                            | Sample Preparation |      | Final Moisture Content %                   |    | C.B.R. Value % |      |
|---------------------------------------------|--------------------------------------------|--------------------|------|--------------------------------------------|----|----------------|------|
| Moisture Content:                           | 10                                         | Surcharge Kg:      | 4.20 | Sample Top                                 | 10 | Sample Top     | 47.7 |
| Bulk Density Mg/m3:                         | 2.13                                       | Soaking Time hrs   | 0    | Sample Bottom                              | 10 | Sample Bottom  | 44.1 |
| Dry Density Mg/m3:                          | 1.94                                       | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 2                    | Percentage retained on 20mm BS test sieve: |                    |      |                                            |    |                |      |
| Compaction Conditions 2.5kg Rammo           |                                            | er                 |      |                                            |    |                |      |

- Top


| <u></u>            | PSL                            | Checked / Approved | Ju          | Date | 11/11/16 | Contract No: |  |
|--------------------|--------------------------------|--------------------|-------------|------|----------|--------------|--|
| (≯∢) ▮             |                                |                    |             |      |          |              |  |
| U K A S<br>TESTING | Professional Caille Laboratory |                    | Client Ref: |      |          |              |  |
| 4043               | Professional Soils Laboratory  |                    | 16-5027     |      |          |              |  |

BS 1377 : Part 4 : 1990

Hole Number: BH12 Top Depth (m): 4.00

Sample Number: 6 Base Depth (m):

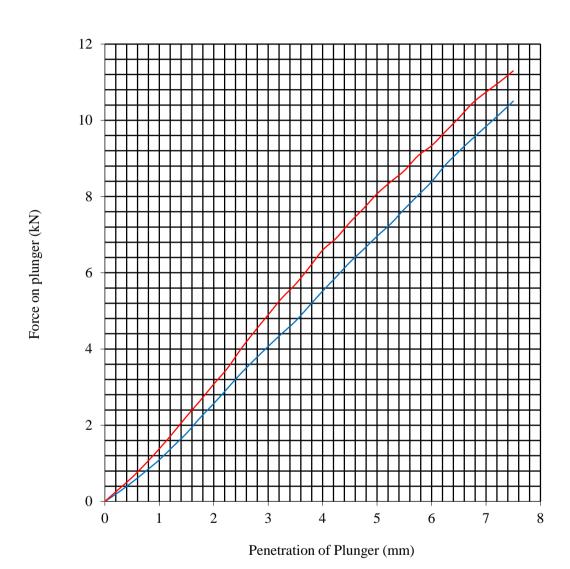
Sample Type: B



| Initial Sample Conditions                  |      | Sample Preparation |      | Final Moisture Content %                   |    | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------|--------------------------------------------|----|----------------|------|
| Moisture Content:                          | 12   | Surcharge Kg:      | 4.20 | Sample Top                                 | 12 | Sample Top     | 58.8 |
| Bulk Density Mg/m3:                        | 2.18 | Soaking Time hrs   | 0    | Sample Bottom                              | 12 | Sample Bottom  | 50.1 |
| Dry Density Mg/m3:                         | 1.95 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 20mm BS test sieve: |      |                    | 2    |                                            |    |                |      |
| Compaction Conditions 2.5kg Ramme          |      | er                 |      |                                            |    |                |      |

- Top

Bottom


| cia<br>T           | BAL                           | Checked / Approved | Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan | Date       | 11/11/16 | Contract No: |
|--------------------|-------------------------------|--------------------|-----------------------------------------|------------|----------|--------------|
| (≯≮)               | PSL                           |                    |                                         | PSL16/4906 |          |              |
| U K A S<br>TESTING | Business Called about an      |                    | Client Ref:                             |            |          |              |
| 4043               | Professional Soils Laboratory |                    | 16-5027                                 |            |          |              |

BS 1377: Part 4: 1990

Hole Number: BH12 Top Depth (m): 4.00

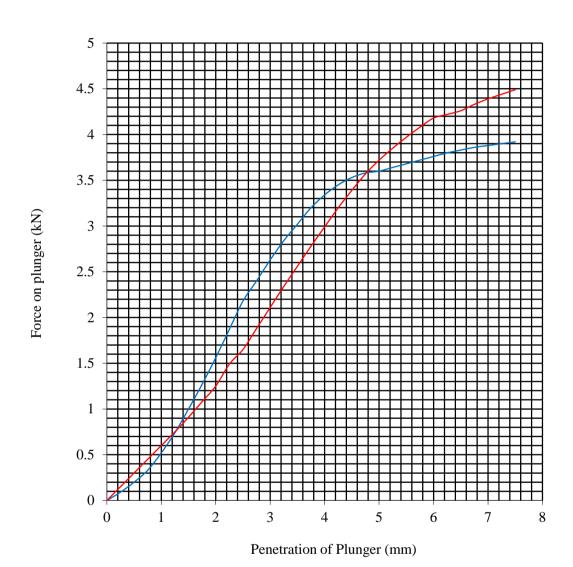
Sample Number: 6 Base Depth (m):

Sample Type: B



| Initial Sample Conditions                    |      | Sample Preparation |      | Final Moisture Content %                   |    | C.B.R. Value % |      |
|----------------------------------------------|------|--------------------|------|--------------------------------------------|----|----------------|------|
| Moisture Content:                            | 14   | Surcharge Kg:      | 4.20 | Sample Top                                 | 13 | Sample Top     | 34.8 |
| Bulk Density Mg/m3:                          | 2.17 | Soaking Time hrs   | 0    | Sample Bottom                              | 14 | Sample Bottom  | 40.4 |
| Dry Density Mg/m3:                           | 1.91 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 20mm BS test sieve: 2 |      |                    | 2    |                                            |    |                |      |
| Compaction Conditions 2.5kg Rammer           |      |                    | er   |                                            |    |                |      |

- Top


| <u></u>            | PSL                            | Checked / Approved | Ju          | Date | 11/11/16 | Contract No: |  |
|--------------------|--------------------------------|--------------------|-------------|------|----------|--------------|--|
| (≯∢) ▮             |                                |                    |             |      |          |              |  |
| U K A S<br>TESTING | Professional Caille Laboratory |                    | Client Ref: |      |          |              |  |
| 4043               | Professional Soils Laboratory  |                    | 16-5027     |      |          |              |  |

BS 1377 : Part 4 : 1990

Hole Number: BH12 Top Depth (m): 4.00

Sample Number: 6 Base Depth (m):

Sample Type: B



| Initial Sample Conditions S                |      | Sample Preparation |      | Final Moisture Content %                   |    | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------|--------------------------------------------|----|----------------|------|
| Moisture Content:                          | 16   | Surcharge Kg:      | 4.20 | Sample Top                                 | 16 | Sample Top     | 18.0 |
| Bulk Density Mg/m3:                        | 2.14 | Soaking Time hrs   | 0    | Sample Bottom                              | 16 | Sample Bottom  | 18.6 |
| Dry Density Mg/m3:                         | 1.85 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 20mm BS test sieve: |      |                    | 2    |                                            |    |                |      |
| Compaction Conditions 2.5kg Ramme          |      | er                 |      |                                            |    |                |      |

- Top

Bottom

| cia<br>T           | BAL                           | Checked / Approved | Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan | Date       | 11/11/16 | Contract No: |
|--------------------|-------------------------------|--------------------|-----------------------------------------|------------|----------|--------------|
| (≯≮)               | PSL                           |                    |                                         | PSL16/4906 |          |              |
| U K A S<br>TESTING | Business Called about an      |                    | Client Ref:                             |            |          |              |
| 4043               | Professional Soils Laboratory |                    | 16-5027                                 |            |          |              |

## **MOISTURE CONDITION VALUE**

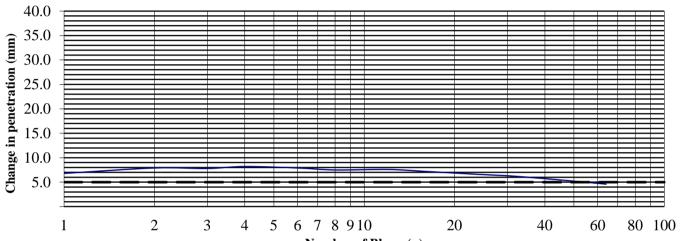
BS1377: Part 4: 1990 Clause 5.4

**Hole Number:** 

**BH12** 

**Top Depth (m):** 4.00

**Sample Number:** 


6

Base Depth (m):

Sample Type: B

| Material Retained on the 20mm BS Test Sieve (%):                     | 2                |
|----------------------------------------------------------------------|------------------|
| Interpretation of test curve is by the instection of 5mm change in p | enetration value |

### **MCV Determination**

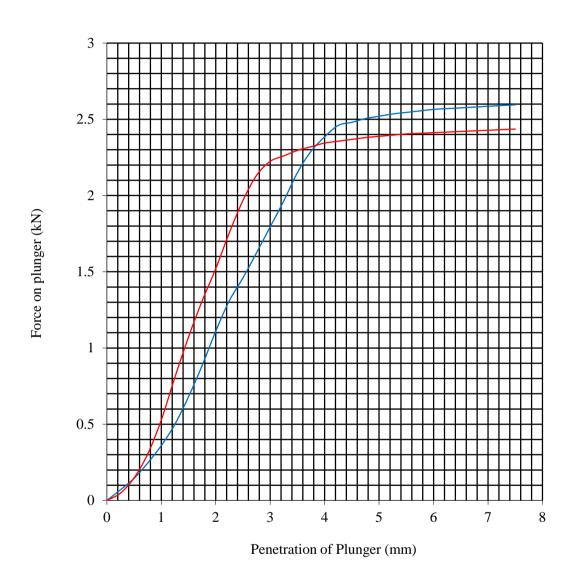


### Number of Blows (n)

| Blows | Penetration | n to 4 n |
|-------|-------------|----------|
| (N)   | (mm)        | (mm)     |
| 1     | 78.9        | 6.8      |
| 2     | 75.6        | 7.9      |
| 3     | 73.4        | 7.8      |
| 4     | 72.1        | 8.2      |
| 6     | 69.5        | 7.9      |
| 8     | 67.7        | 7.5      |
| 12    | 65.6        | 7.6      |
| 16    | 63.9        | 7.2      |
| 24    | 61.6        | 6.6      |
| 32    | 60.2        | 6.2      |
| 48    | 58.0        | 5.3      |
| 64    | 56.7        | 4.6      |
| 96    | 55.0        |          |
| 128   | 54.0        |          |
| 192   | 52.7        |          |
| 256   | 52.1        |          |

### **Test Results.**

| Moisture Content (%) | 5.9  |
|----------------------|------|
| MCV                  | 17.9 |


| _ dia  |                               | Checked / Approved | J. See | Date    | 11/11/16 | Contract No: |
|--------|-------------------------------|--------------------|--------|---------|----------|--------------|
| (≯∢) ▮ |                               |                    |        |         |          | PSL16/4906   |
| U KAS  | Park and Andread Andread      | Arklow             |        |         |          | Client Ref:  |
| 4043   | Professional Soils Laboratory |                    |        | 16-5027 |          |              |

BS 1377: Part 4: 1990

Hole Number: BH12 Top Depth (m): 5.00

Sample Number: 7 Base Depth (m):

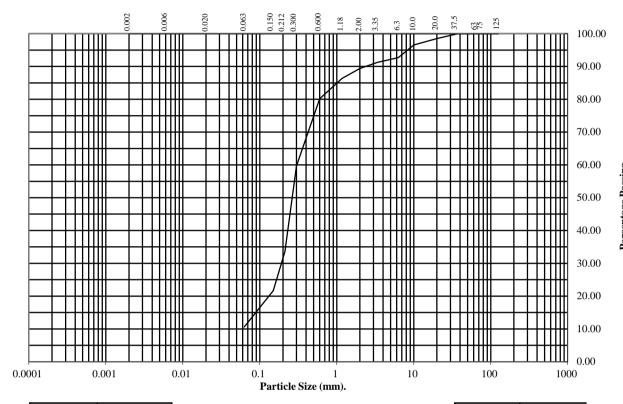
Sample Type: B



| Initial Sample Cond      | itions | Sample Prepara   | ation | Final Moisture Cont                        | tent % | C.B.R.        | Value % |
|--------------------------|--------|------------------|-------|--------------------------------------------|--------|---------------|---------|
| Moisture Content:        | 16     | Surcharge Kg:    | 4.20  | Sample Top                                 | 16     | Sample Top    | 12.6    |
| Bulk Density Mg/m3:      | 1.93   | Soaking Time hrs | 0     | Sample Bottom                              | 16     | Sample Bottom | 14.9    |
| Dry Density Mg/m3:       | 1.67   | Swelling mm:     | 0.00  | Remarks: See summary of soil descriptions. |        |               |         |
| Percentage retained on 2 | 20mm B | S test sieve:    | 1     |                                            |        |               |         |
| Compaction Conditions    |        | 2.5kg Ramm       | er    |                                            |        |               |         |

- Top

| _ de _             |                               | Checked / Approved | Jan 1940 | Date | 11/11/16    | Contract No: |
|--------------------|-------------------------------|--------------------|----------|------|-------------|--------------|
| (≯≮)               | PSL                           |                    |          |      |             | PSL16/4906   |
| U K A S<br>TESTING | Businesis Calle Laboratore    | Arklow             |          |      | Client Ref: |              |
| 4043               | Professional Soils Laboratory |                    |          |      |             | 16-5027      |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH12 Top Depth (m): 5.00

Sample Number: 7 Base Depth(m):

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 100        |
| 20      | 99         |
| 10      | 97         |
| 6.3     | 93         |
| 3.35    | 91         |
| 2       | 89         |
| 1.18    | 86         |
| 0.6     | 80         |
| 0.3     | 60         |
| 0.212   | 34         |
| 0.15    | 22         |
| 0.063   | 11         |

| Soil                                   | Total               |
|----------------------------------------|---------------------|
| Fraction                               | Percentage          |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>11<br>78<br>11 |

Remarks:

See summary of soil descriptions.



Checked / Approved

She

Date 11/11

11/11/16 Contract No: PSL16/4906

Arklow

Client Ref: 16-5027

## **MOISTURE CONDITION VALUE**

BS1377: Part 4: 1990 Clause 5.4

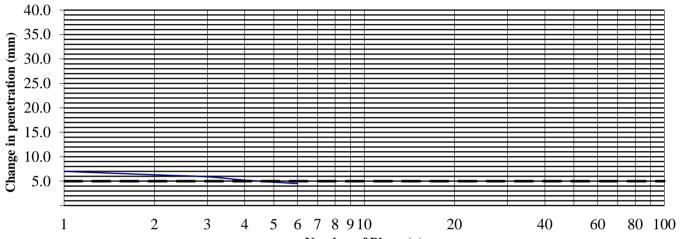
**Hole Number:** 

**BH12** 

Top Depth (m): 5.

5.00

**Sample Number:** 


7

Base Depth (m):

Sample Type: B

| Material Retained on the 20mm BS Test Sieve (%):                     | 1                |
|----------------------------------------------------------------------|------------------|
| Interpretation of test curve is by the instection of 5mm change in p | enetration value |

### **MCV Determination**



### Number of Blows (n)

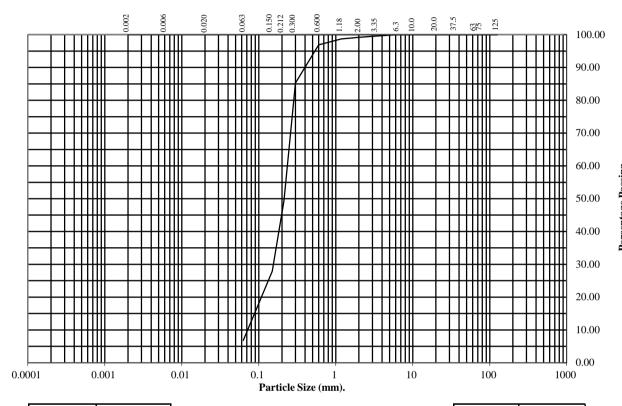
| Blows | Penetration | n to 4 n |
|-------|-------------|----------|
| (N)   | (mm)        | (mm)     |
| 1     | 81.3        | 7.0      |
| 2     | 78.0        | 6.3      |
| 3     | 76.0        | 5.9      |
| 4     | 74.3        | 5.2      |
| 6     | 72.6        | 4.5      |
| 8     | 71.7        |          |
| 12    | 70.1        |          |
| 16    | 69.1        |          |
| 24    | 68.1        |          |
| 32    |             |          |
| 48    |             |          |
| 64    |             |          |
| 96    |             |          |
| 128   |             |          |
| 192   |             |          |
| 256   |             |          |

### **Test Results.**

| Moisture Content (%) | 16  |
|----------------------|-----|
| MCV                  | 7.0 |



| Checked / Approved | Shell       | Date | 11/11/16 | Contract No: |
|--------------------|-------------|------|----------|--------------|
|                    |             |      |          | PSL16/4906   |
| _                  | Client Ref: |      |          |              |
|                    |             |      |          | 16-5027      |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH12 Top Depth (m): 7.50

Sample Number: 12 Base Depth(m):

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 100        |
| 20      | 100        |
| 10      | 100        |
| 6.3     | 100        |
| 3.35    | 100        |
| 2       | 99         |
| 1.18    | 99         |
| 0.6     | 97         |
| 0.3     | 85         |
| 0.212   | 49         |
| 0.15    | 28         |
| 0.063   | 7          |

| Soil                                   | Total             |  |  |
|----------------------------------------|-------------------|--|--|
| Fraction                               | Percentage        |  |  |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>1<br>92<br>7 |  |  |

Remarks:

See summary of soil descriptions.



Professional Soils Laboratory

State

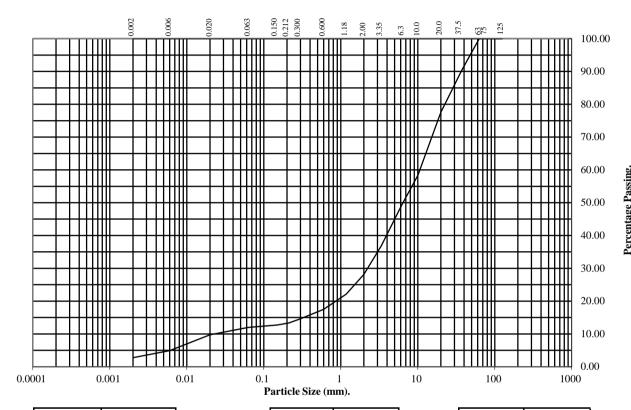
Date

11/11/16

Contract No: PSL16/4906

Arklow

Client Ref: 16-5027


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: BH13 Top Depth (m): 1.00

Sample Number: 1 Base Depth(m):

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 90         |
| 20      | 78         |
| 10      | 58         |
| 6.3     | 50         |
| 3.35    | 37         |
| 2       | 28         |
| 1.18    | 22         |
| 0.6     | 18         |
| 0.3     | 15         |
| 0.212   | 13         |
| 0.15    | 13         |
| 0.063   | 12         |

| Particle | Percentage |
|----------|------------|
| Diameter | Passing    |
| 0.02     | 10         |
| 0.006    | 5          |
| 0.002    | 3          |

| Soil     | Total      |
|----------|------------|
| Fraction | Percentage |
| Cobbles  | 0          |
| Gravel   | 72         |
| Sand     | 16         |
| Silt     | 9          |
| Clay     | 3          |

Remarks:

See summary of soil descriptions.



PSL
Professional Soils Laboratory

| Checked / | Approved |
|-----------|----------|
|-----------|----------|

86

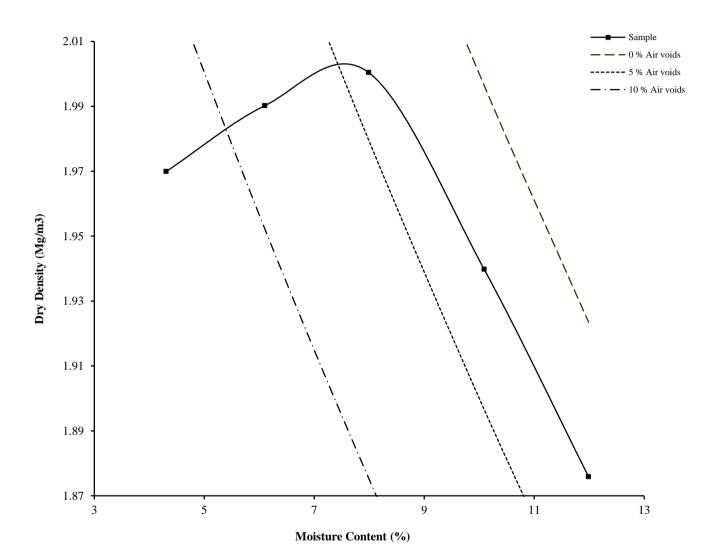
11/11/16

Date

Contract No: PSL16/4906

Arklow

Client Ref: 16-5027


## DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377: Part 4: 1990

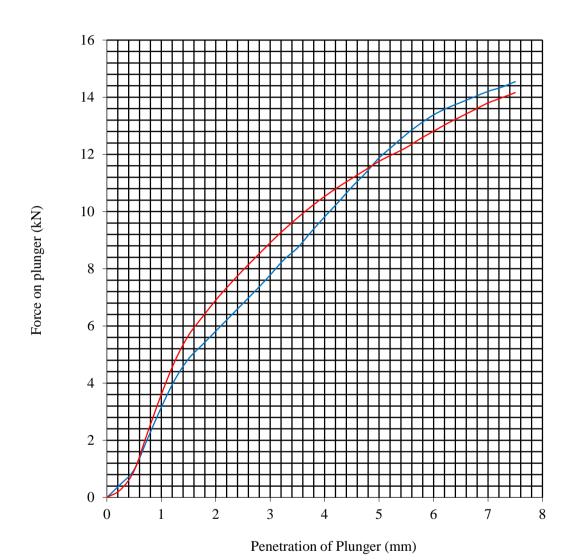
Hole Number: BH13 Top Depth (m): 3.00

Sample Number: 4 Base Depth (m):

Sample Type: B



| Initial Moisture Content:   |                                | 10      | Method of Compaction:                             | 2.5Kg Rammer | Separate Samples |
|-----------------------------|--------------------------------|---------|---------------------------------------------------|--------------|------------------|
| Particle Density (Mg/m3):   | 2.5                            | Assumed | Material Retained on 37.5 mm Test Sieve (%):      |              | 0                |
| Maximum Dry Density (Mg.    | /m3):                          | 2.00    | 2.00 Material Retained on 20.0 mm Test Sieve (%): |              | 6                |
| Optimum Moisture Content    | ptimum Moisture Content (%): 8 |         |                                                   |              |                  |
| Remarks                     |                                |         |                                                   |              |                  |
| See summary of soil descrip | tions                          |         |                                                   |              |                  |


| the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Checked / Approved            | J. Sheet | Date       | 11/11/16 | Contract No. |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|------------|----------|--------------|------------|
| (≯∢) ▮                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (FR) PSIL                     |          | PSL16/4906 |          |              |            |
| U K A S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Professional Calle Laboratory | Arklow   |            |          |              | Client Ref |
| 4043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Professional Soils Laboratory |          | 16-5027    |          |              |            |

BS 1377 : Part 4 : 1990

Hole Number: BH13 Top Depth (m): 3.00

Sample Number: 4 Base Depth (m):

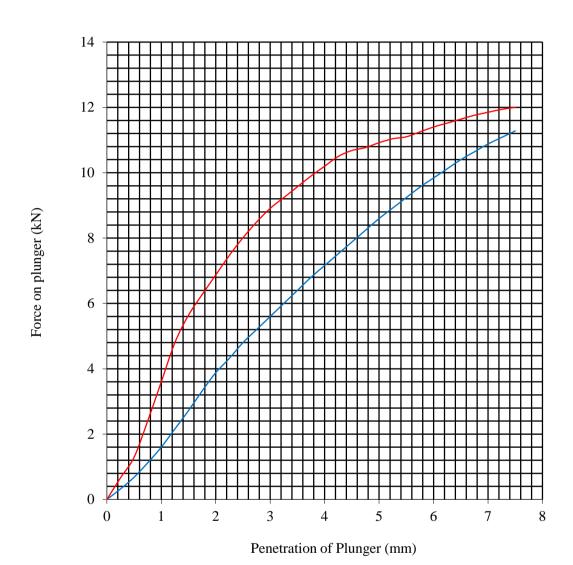
Sample Type: B



| Initial Sample Conditions Sample Preparatio |        | ation            | Final Moisture Cont | C.B.R. Value %                             |     |               |      |
|---------------------------------------------|--------|------------------|---------------------|--------------------------------------------|-----|---------------|------|
| Moisture Content:                           | 4.3    | Surcharge Kg:    | 4.20                | Sample Top                                 | 4.0 | Sample Top    | 59.4 |
| Bulk Density Mg/m3:                         | 2.05   | Soaking Time hrs | 0                   | Sample Bottom                              | 4.6 | Sample Bottom | 60.2 |
| Dry Density Mg/m3:                          | 1.97   | Swelling mm:     | 0.00                | Remarks: See summary of soil descriptions. |     |               |      |
| Percentage retained on 2                    | 20mm B | S test sieve:    | 6                   | 1                                          |     |               |      |
| Compaction Conditions                       |        | 2.5kg Ramm       | er                  |                                            |     |               |      |

- Top

Bottom


|                    | Checked / Approved            | Jan 1940 | Date        | 11/11/16 | Contract No: |         |
|--------------------|-------------------------------|----------|-------------|----------|--------------|---------|
| (≯≮)               | UKAS PSL                      |          | PSL16/4906  |          |              |         |
| U K A S<br>TESTING |                               |          | Client Ref: |          |              |         |
| 4043               | Professional Soils Laboratory |          |             |          |              | 16-5027 |

BS 1377: Part 4: 1990

Hole Number: BH13 Top Depth (m): 3.00

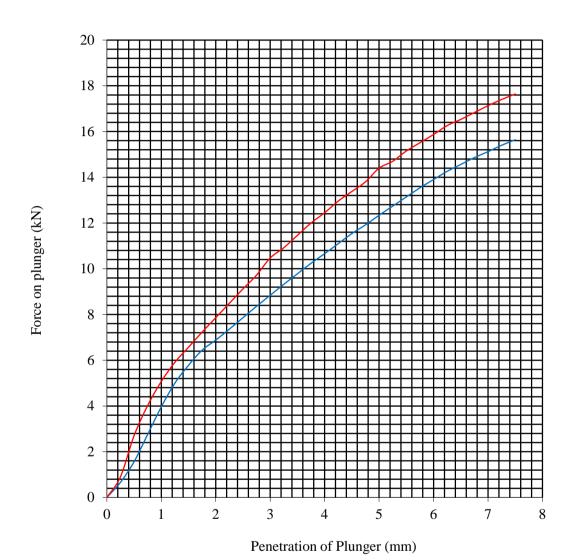
Sample Number: 4 Base Depth (m):

Sample Type: B



| Initial Sample Conditions Sample           |      | Sample Prepara   | ation | Final Moisture Content %                   |     | C.B.R. Value % |      |
|--------------------------------------------|------|------------------|-------|--------------------------------------------|-----|----------------|------|
| Moisture Content:                          | 6.1  | Surcharge Kg:    | 4.20  | Sample Top                                 | 6.5 | Sample Top     | 43.0 |
| Bulk Density Mg/m3:                        | 2.11 | Soaking Time hrs | 0     | Sample Bottom                              | 5.7 | Sample Bottom  | 60.7 |
| Dry Density Mg/m3:                         | 1.99 | Swelling mm:     | 0.00  | Remarks: See summary of soil descriptions. |     |                |      |
| Percentage retained on 20mm BS test sieve: |      | 6                |       |                                            |     |                |      |
| Compaction Conditions 2.5kg Ramme          |      | er               |       |                                            |     |                |      |

- Top


| _ db _           |                               | Checked / Approved | Jes     | Date        | 11/01/16 | Contract No: |
|------------------|-------------------------------|--------------------|---------|-------------|----------|--------------|
| (≯≮)             |                               |                    |         | PSL16/4906  |          |              |
| U KAS<br>TESTING | Business Called about an      |                    |         | Client Ref: |          |              |
| 4043             | Professional Soils Laboratory |                    | 16-5027 |             |          |              |

BS 1377 : Part 4 : 1990

Hole Number: BH13 Top Depth (m): 3.00

Sample Number: 4 Base Depth (m):

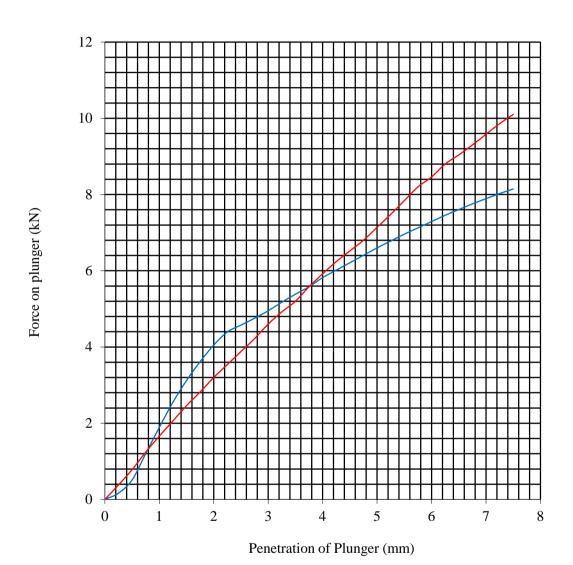
Sample Type: B



| <b>Initial Sample Conditions</b>             |      | Sample Preparation |      | Final Moisture Content %                   |     | C.B.R. Value % |      |
|----------------------------------------------|------|--------------------|------|--------------------------------------------|-----|----------------|------|
| Moisture Content:                            | 8.0  | Surcharge Kg:      | 4.20 | Sample Top                                 | 8.1 | Sample Top     | 61.7 |
| Bulk Density Mg/m3:                          | 2.16 | Soaking Time hrs   | 0    | Sample Bottom                              | 7.8 | Sample Bottom  | 72.0 |
| Dry Density Mg/m3:                           | 2.00 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |     |                |      |
| Percentage retained on 20mm BS test sieve: 6 |      |                    |      |                                            |     |                |      |
| Compaction Conditions 2.5kg Rammer           |      | er                 |      |                                            |     |                |      |

- Top

Bottom


| ( <del>)</del>     |                               | Checked / Approved | Jes     | Date        | 11/11/16 | Contract No: |
|--------------------|-------------------------------|--------------------|---------|-------------|----------|--------------|
| (≯≮)               |                               |                    |         | PSL16/4906  |          |              |
| U K A S<br>TESTING | Business Called about the     |                    |         | Client Ref: |          |              |
| 4043               | Professional Soils Laboratory |                    | 16-5027 |             |          |              |

BS 1377: Part 4: 1990

Hole Number: BH13 Top Depth (m): 3.00

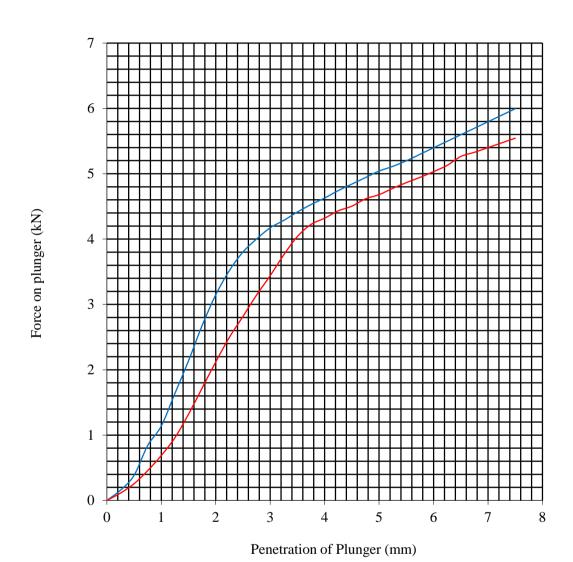
Sample Number: 4 Base Depth (m):

Sample Type: B



| Initial Sample Conditions Sam              |      | Sample Preparation |      | Final Moisture Content %                   |    | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------|--------------------------------------------|----|----------------|------|
| Moisture Content:                          | 10   | Surcharge Kg:      | 4.20 | Sample Top                                 | 10 | Sample Top     | 34.7 |
| Bulk Density Mg/m3:                        | 2.14 | Soaking Time hrs   | 0    | Sample Bottom                              | 10 | Sample Bottom  | 35.7 |
| Dry Density Mg/m3:                         | 1.94 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 20mm BS test sieve: |      | 6                  |      |                                            |    |                |      |
| Compaction Conditions 2.5kg Ramme          |      | er                 |      |                                            |    |                |      |

- Top


| _ de _             |                               | Checked / Approved | Jan 1940 | Date        | 11/11/16 | Contract No: |  |  |
|--------------------|-------------------------------|--------------------|----------|-------------|----------|--------------|--|--|
| (≯≮)               | PSL                           |                    |          |             |          |              |  |  |
| U K A S<br>TESTING | Businesis Calle Laboratore    |                    |          | Client Ref: |          |              |  |  |
| 4043               | Professional Soils Laboratory |                    | 16-5027  |             |          |              |  |  |

BS 1377: Part 4: 1990

Hole Number: BH13 Top Depth (m): 3.00

Sample Number: 4 Base Depth (m):

Sample Type: B



| Initial Sample Conditions Sa                 |      | Sample Preparation |      | Final Moisture Content %                   |    | C.B.R. Value % |      |
|----------------------------------------------|------|--------------------|------|--------------------------------------------|----|----------------|------|
| Moisture Content:                            | 12   | Surcharge Kg:      | 4.20 | Sample Top                                 | 12 | Sample Top     | 28.8 |
| Bulk Density Mg/m3:                          | 2.10 | Soaking Time hrs   | 0    | Sample Bottom                              | 12 | Sample Bottom  | 23.4 |
| Dry Density Mg/m3:                           | 1.88 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 20mm BS test sieve: 6 |      |                    | 1    |                                            |    |                |      |
| Compaction Conditions                        |      | 2.5kg Ramm         | er   | ]                                          |    |                |      |

- Top

| <u>_</u>           |                               | Checked / Approved | Checked / Approved Date 11/11/16 |  |  |  |  |  |
|--------------------|-------------------------------|--------------------|----------------------------------|--|--|--|--|--|
| (≯≮)               |                               |                    |                                  |  |  |  |  |  |
| U K A S<br>TESTING | Business Called about an      |                    | Client Ref:                      |  |  |  |  |  |
| 4043               | Professional Soils Laboratory |                    | 16-5027                          |  |  |  |  |  |

## **MOISTURE CONDITION VALUE**

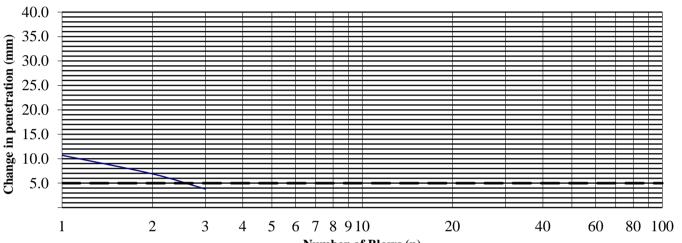
BS1377: Part 4: 1990 Clause 5.4

**Hole Number:** 

**BH13** 

**Top Depth (m):** 3.00

**Sample Number:** 


4

Base Depth (m):

Sample Type: B

| Material Retained on the 20mm BS Test Sieve (%):                     | 6                |
|----------------------------------------------------------------------|------------------|
| Interpretation of test curve is by the instection of 5mm change in p | enetration value |

### **MCV Determination**



### Number of Blows (n)

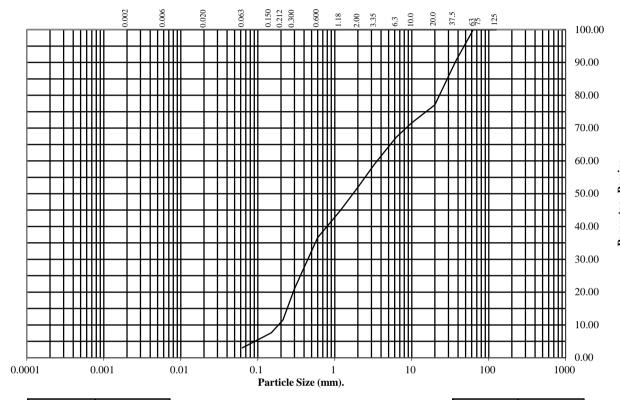
| Blows | Penetration | n to 4 n |
|-------|-------------|----------|
| (N)   | (mm)        | (mm)     |
| 1     | 59.4        | 10.7     |
| 2     | 53.5        | 6.9      |
| 3     | 50.1        | 3.8      |
| 4     | 48.7        |          |
| 6     | 47.4        |          |
| 8     | 46.6        |          |
| 12    | 46.3        |          |
| 16    |             |          |
| 24    |             |          |
| 32    |             |          |
| 48    |             |          |
| 64    |             |          |
| 96    |             |          |
| 128   |             |          |
| 192   |             |          |
| 256   |             |          |

### **Test Results.**

| M | Ioisture Content (%) | 10  |
|---|----------------------|-----|
| M | ICV                  | 3.9 |



| Checked / Approved | Date         | 11/11/16 | Contract No: |
|--------------------|--------------|----------|--------------|
|                    |              |          | PSL16/4906   |
| Arklo              | $\mathbf{w}$ |          | Client Ref:  |
|                    |              |          | 16-5027      |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH13 Top Depth (m): 4.00

Sample Number: 5 Base Depth(m):

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 91         |
| 20      | 77         |
| 10      | 72         |
| 6.3     | 67         |
| 3.35    | 59         |
| 2       | 52         |
| 1.18    | 45         |
| 0.6     | 37         |
| 0.3     | 21         |
| 0.212   | 12         |
| 0.15    | 8          |
| 0.063   | 3          |

| Soil                                   | Total              |
|----------------------------------------|--------------------|
| Fraction                               | Percentage         |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>48<br>49<br>3 |

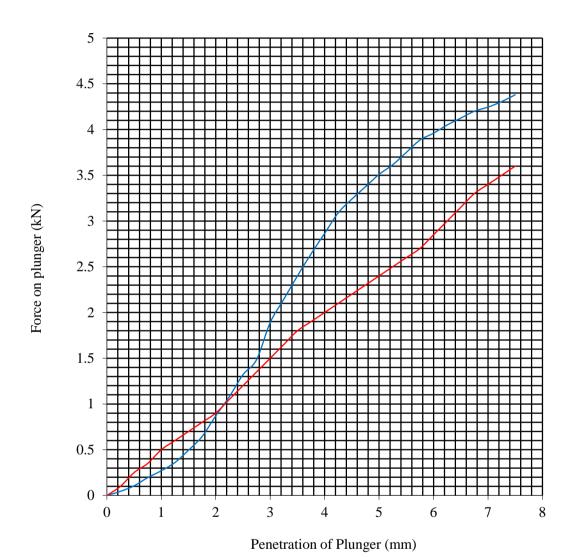
Remarks:

See summary of soil descriptions.



| <b>PSL</b>                    |  |
|-------------------------------|--|
| Professional Soils Laboratory |  |

| Checked / Approved | Date        | 11/11/16 | Contract No: |
|--------------------|-------------|----------|--------------|
|                    | PSL16/4906  |          |              |
| Arklo              | Client Ref: |          |              |


16-5027

BS 1377 : Part 4 : 1990

Hole Number: BH13 Top Depth (m): 4.00

Sample Number: 5 Base Depth (m):

Sample Type: B



| Initial Sample Cond      | itions | Sample Prepara   | ation | Final Moisture Cont     | tent %       | C.B.R.        | Value % |
|--------------------------|--------|------------------|-------|-------------------------|--------------|---------------|---------|
| Moisture Content:        | 11     | Surcharge Kg:    | 4.20  | Sample Top              | 11           | Sample Top    | 17.6    |
| Bulk Density Mg/m3:      | 2.11   | Soaking Time hrs | 0     | Sample Bottom           | 12           | Sample Bottom | 12.0    |
| Dry Density Mg/m3:       | 1.90   | Swelling mm:     | 0.00  | Remarks: See summary of | soil descrip | tions.        |         |
| Percentage retained on 2 | 20mm B | S test sieve:    | 23    |                         |              |               |         |
| Compaction Conditions    |        | 2.5kg Ramm       | er    |                         |              |               |         |

- Top

Bottom

| _ de _       |                               | Checked / Approved | Jan 1940 | Date | 11/11/16    | Contract No: |
|--------------|-------------------------------|--------------------|----------|------|-------------|--------------|
| (≯≮)         | PSL                           |                    |          |      |             | PSL16/4906   |
| UKAS TESTING | Arklow                        |                    |          |      | Client Ref: |              |
| 4043         | Professional Soils Laboratory |                    |          |      | 16-5027     |              |

## **MOISTURE CONDITION VALUE**

BS1377: Part 4: 1990 Clause 5.4

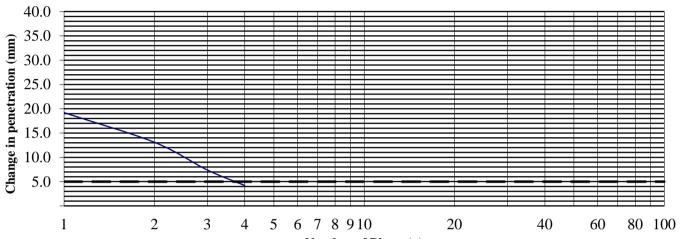
**Hole Number:** 

**BH13** 

Top Depth (m):

4.00

**Sample Number:** 


5

Base Depth (m):

Sample Type: B

| Material Retained on the 20mm BS Test Sieve (%):                     | 23               |
|----------------------------------------------------------------------|------------------|
| Interpretation of test curve is by the instection of 5mm change in p | enetration value |

### **MCV Determination**



### Number of Blows (n)

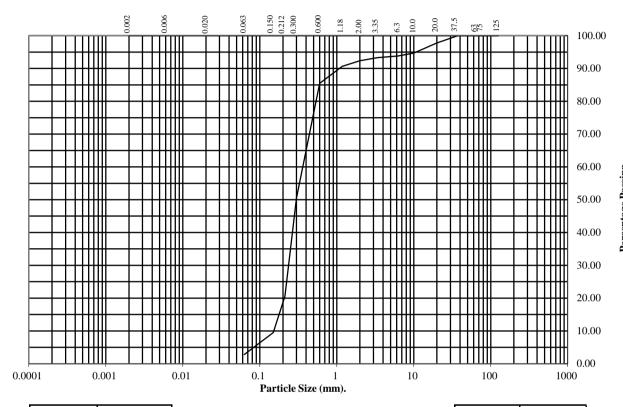
| Blows | Penetration | n to 4 n |
|-------|-------------|----------|
| (N)   | (mm)        | (mm)     |
| 1     | 89.4        | 19.2     |
| 2     | 79.6        | 13.1     |
| 3     | 73.6        | 7.4      |
| 4     | 70.2        | 4.2      |
| 6     | 67.1        |          |
| 8     | 66.5        |          |
| 12    | 66.2        |          |
| 16    | 66.0        |          |
| 24    |             |          |
| 32    |             |          |
| 48    |             |          |
| 64    |             |          |
| 96    |             |          |
| 128   |             |          |
| 192   |             |          |
| 256   |             |          |

### **Test Results.**

| Moisture Content (%) | 11  |
|----------------------|-----|
| MCV                  | 5.8 |

| ************************************** | PSL                           |
|----------------------------------------|-------------------------------|
| UKAS<br>TESTING<br>4043                | Professional Soils Laboratory |

| Checked / Approved | Date | 11/01/16 | Contract No: |
|--------------------|------|----------|--------------|
|                    |      |          | PSL16/4906   |
| Arklow             |      |          | Client Ref:  |
|                    |      |          | 16-5027      |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

**Hole Number: BH13** 6.50 Top Depth (m):

8 **Sample Number: Base Depth(m):** 

**Sample Type:** В



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 100        |
| 20      | 98         |
| 10      | 95         |
| 6.3     | 94         |
| 3.35    | 93         |
| 2       | 92         |
| 1.18    | 91         |
| 0.6     | 85         |
| 0.3     | 50         |
| 0.212   | 21         |
| 0.15    | 9          |
| 0.063   | 3          |

| Soil                                   | Total             |
|----------------------------------------|-------------------|
| Fraction                               | Percentage        |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>8<br>89<br>3 |

Remarks:

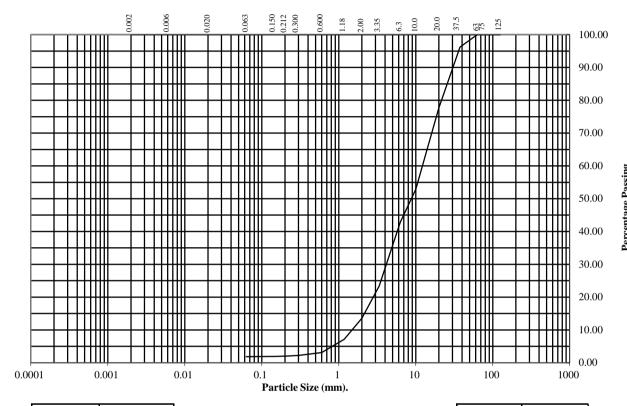
See summary of soil descriptions.



| PSL                       |  |
|---------------------------|--|
| essional Soils Laboratory |  |

| Checked / Approved |  | Date | 11/11/16    | Contract No: |
|--------------------|--|------|-------------|--------------|
|                    |  |      |             | PSL16/4906   |
| Arklow             |  |      | Client Ref: |              |
|                    |  |      |             | 16-5027      |

PSL005 Page Nov 15 of


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH14 Top Depth (m): 1.60

Sample Number: 3 Base Depth(m):

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 96         |
| 20      | 78         |
| 10      | 53         |
| 6.3     | 43         |
| 3.35    | 23         |
| 2       | 14         |
| 1.18    | 7          |
| 0.6     | 3          |
| 0.3     | 2          |
| 0.212   | 2          |
| 0.15    | 2          |
| 0.063   | 2          |

| Soil                                   | Total              |
|----------------------------------------|--------------------|
| Fraction                               | Percentage         |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>86<br>12<br>2 |

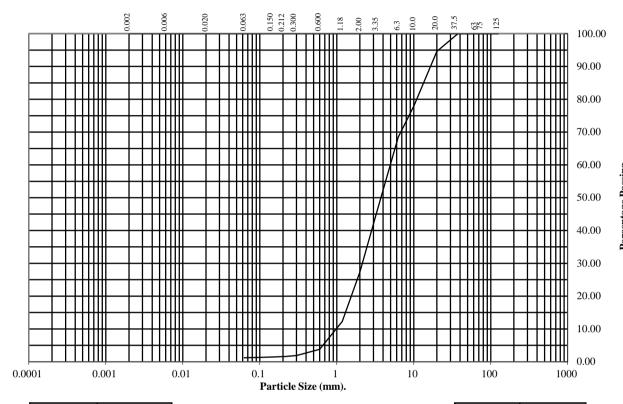
Remarks:

See summary of soil descriptions.



| <b>PSL</b>                    |  |
|-------------------------------|--|
| Professional Soils Laboratory |  |

| Checked / Approved |  | Date | 11/11/16 | Contract No: |
|--------------------|--|------|----------|--------------|
|                    |  |      |          | PSL16/4906   |
| Arklow             |  |      |          | Client Ref:  |
|                    |  |      |          | 16-5027      |


**BS1377 : Part 2 : 1990** 

Wet Sieve, Clause 9.2

Hole Number: BH14 Top Depth (m): 4.00

Sample Number: 6 Base Depth(m):

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 100        |
| 20      | 95         |
| 10      | 78         |
| 6.3     | 69         |
| 3.35    | 46         |
| 2       | 27         |
| 1.18    | 12         |
| 0.6     | 4          |
| 0.3     | 2          |
| 0.212   | 2          |
| 0.15    | 1          |
| 0.063   | 1          |

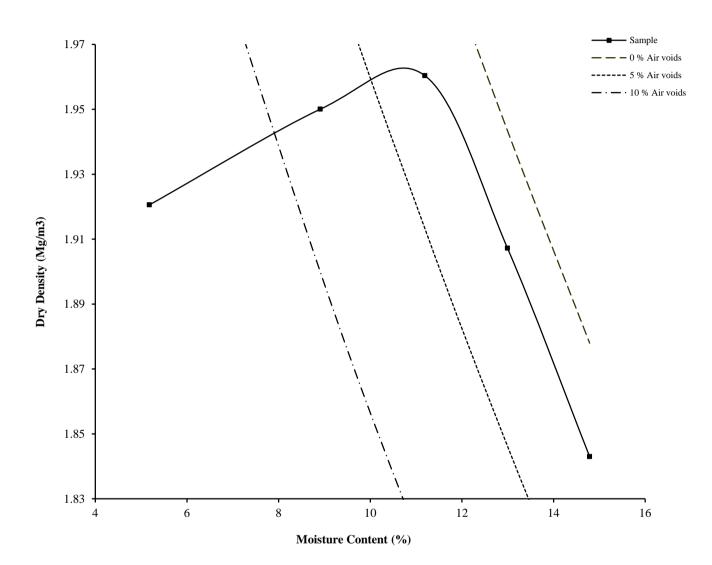
| Soil                                   | Total              |
|----------------------------------------|--------------------|
| Fraction                               | Percentage         |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>73<br>26<br>1 |

Remarks:

See summary of soil descriptions.



| Checked / Approved |  | Date | 11/11/16 | Contract No: |
|--------------------|--|------|----------|--------------|
|                    |  |      |          | PSL16/4906   |
| Arklow             |  |      |          | Client Ref:  |
|                    |  |      |          | 16-5027      |


## DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377: Part 4: 1990

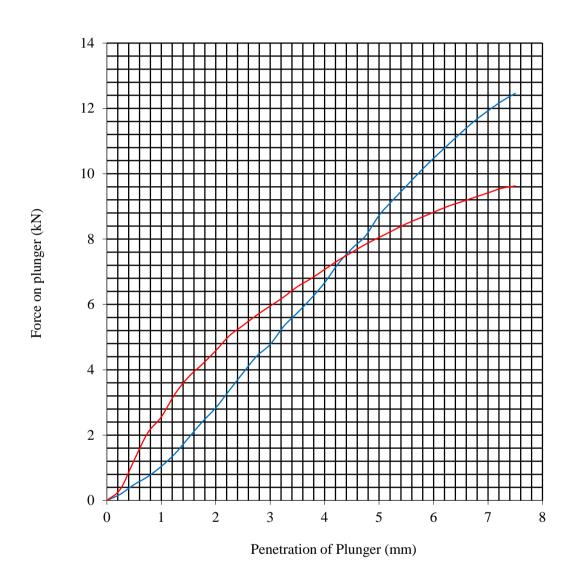
Hole Number: BH14 Top Depth (m): 4.00

Sample Number: 6 Base Depth (m):

Sample Type: B



| Initial Moisture Content:        | itial Moisture Content: 5.2 Method of Compaction: 2.5Kg Rammer |         | Separate Samples                             |  |   |
|----------------------------------|----------------------------------------------------------------|---------|----------------------------------------------|--|---|
| Particle Density (Mg/m3):        | 2.6                                                            | Assumed | Material Retained on 37.5 mm Test Sieve (%): |  | 0 |
| Maximum Dry Density (Mg/         | /m3):                                                          | 1.96    | Material Retained on 20.0 mm Test Sieve (%): |  | 5 |
| Optimum Moisture Content (%): 11 |                                                                |         |                                              |  |   |
| Remarks                          |                                                                |         |                                              |  |   |
| See summary of soil descrip      | tions                                                          |         |                                              |  |   |


|                    | Checked / Approved            |        | Date       | 11/11/16 | Contract No. |  |
|--------------------|-------------------------------|--------|------------|----------|--------------|--|
| (≯∢) ▮             | PSL                           |        | PSL16/4906 |          |              |  |
| U K A S<br>TESTING | Business Calle Laboratory     | Arklow |            |          | Client Ref   |  |
| 4043               | Professional Soils Laboratory |        | THEOW      |          |              |  |

BS 1377 : Part 4 : 1990

Hole Number: BH14 Top Depth (m): 4.00

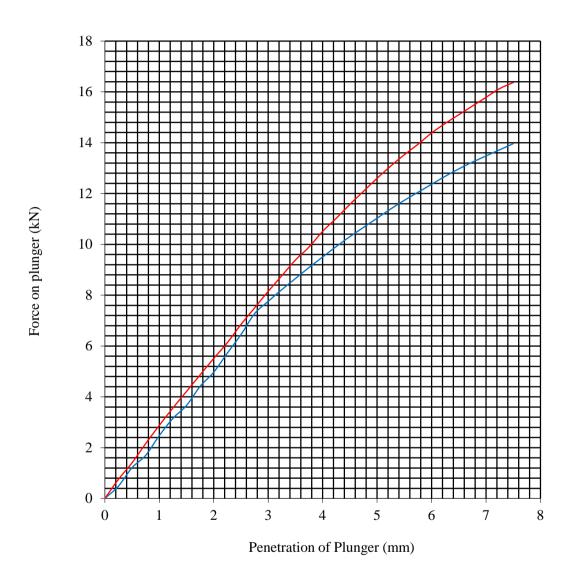
Sample Number: 6 Base Depth (m):

Sample Type: B



| Initial Sample Conditions Sample           |      | Sample Prepara   | ation | Final Moisture Content % |              | C.B.R. Value % |      |
|--------------------------------------------|------|------------------|-------|--------------------------|--------------|----------------|------|
| Moisture Content:                          | 5.2  | Surcharge Kg:    | 4.20  | Sample Top               | 5.0          | Sample Top     | 43.6 |
| Bulk Density Mg/m3:                        | 2.02 | Soaking Time hrs | 0     | Sample Bottom            | 5.4          | Sample Bottom  | 40.6 |
| Dry Density Mg/m3:                         | 1.92 | Swelling mm:     | 0.00  | Remarks: See summary of  | soil descrip | otions.        |      |
| Percentage retained on 20mm BS test sieve: |      | 5                |       |                          |              |                |      |
| Compaction Conditions 2.5kg Rammo          |      | er               |       |                          |              |                |      |

- Top


| _ dia _          |                               | Checked / Approved | Jes | Date        | 11/11/16 | Contract No: |
|------------------|-------------------------------|--------------------|-----|-------------|----------|--------------|
| (≯≮)             |                               |                    |     | PSL16/4906  |          |              |
| U KAS<br>TESTING | Business Collede beautions    |                    |     | Client Ref: |          |              |
| 4043             | Professional Soils Laboratory |                    |     |             |          | 16-5027      |

BS 1377 : Part 4 : 1990

Hole Number: BH14 Top Depth (m): 4.00

Sample Number: 6 Base Depth (m):

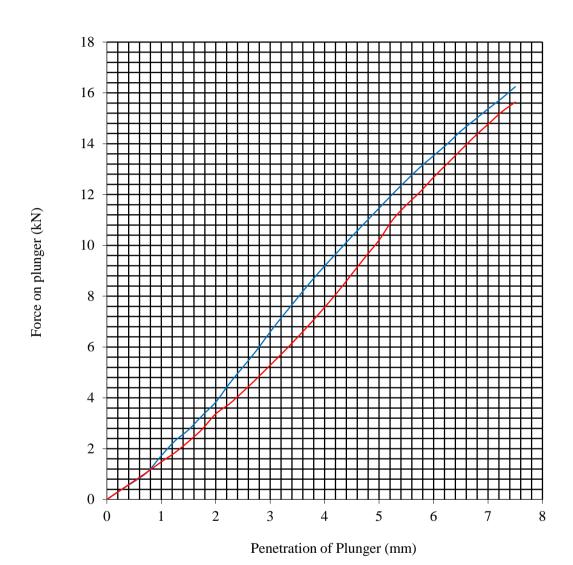
Sample Type: B



| Initial Sample Conditions Samp             |      | Sample Prepara   | ation | Final Moisture Content % |              | C.B.R. Value % |      |
|--------------------------------------------|------|------------------|-------|--------------------------|--------------|----------------|------|
| Moisture Content:                          | 8.9  | Surcharge Kg:    | 4.20  | Sample Top               | 8.6          | Sample Top     | 55.1 |
| Bulk Density Mg/m3:                        | 2.12 | Soaking Time hrs | 0     | Sample Bottom            | 9.2          | Sample Bottom  | 63.0 |
| Dry Density Mg/m3:                         | 1.95 | Swelling mm:     | 0.00  | Remarks: See summary of  | soil descrip | tions.         |      |
| Percentage retained on 20mm BS test sieve: |      | 5                |       |                          |              |                |      |
| Compaction Conditions 2.5kg Ramme          |      | er               |       |                          |              |                |      |

- Top

Bottom


| _ de _           |                                | Checked / Approved | Checked / Approved Date 11/11/16 |             |  |         |  |  |  |
|------------------|--------------------------------|--------------------|----------------------------------|-------------|--|---------|--|--|--|
| (≯≮)             | PSL                            |                    |                                  | PSL16/4906  |  |         |  |  |  |
| U KAS<br>TESTING | Purchasianal Calla Laborataria |                    |                                  | Client Ref: |  |         |  |  |  |
| 4043             | Professional Soils Laboratory  |                    |                                  |             |  | 16-5027 |  |  |  |

BS 1377 : Part 4 : 1990

Hole Number: BH14 Top Depth (m): 4.00

Sample Number: 6 Base Depth (m):

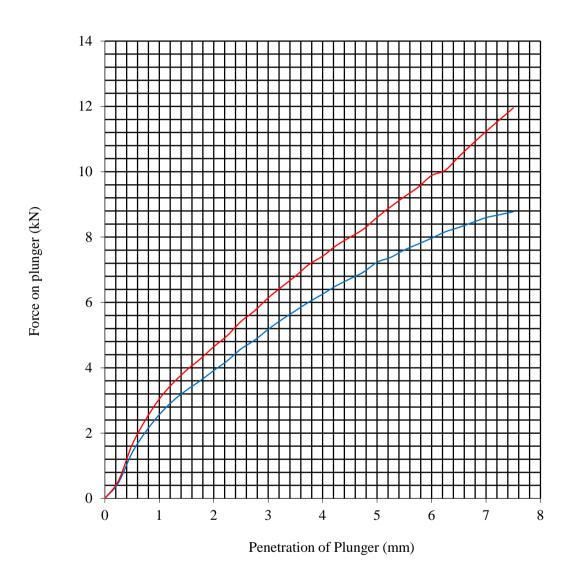
Sample Type: B



| Initial Sample Conditions Sample Pre       |      | Sample Prepara   | ration Final Moisture Conte |                         | ent % C.B.R. |               | Value % |  |
|--------------------------------------------|------|------------------|-----------------------------|-------------------------|--------------|---------------|---------|--|
| Moisture Content:                          | 11   | Surcharge Kg:    | 4.20                        | Sample Top              | 11           | Sample Top    | 57.3    |  |
| Bulk Density Mg/m3:                        | 2.18 | Soaking Time hrs | 0                           | Sample Bottom           | 11           | Sample Bottom | 51.0    |  |
| Dry Density Mg/m3:                         | 1.96 | Swelling mm:     | 0.00                        | Remarks: See summary of | soil descrip | tions.        |         |  |
| Percentage retained on 20mm BS test sieve: |      | 5                |                             |                         |              |               |         |  |
| Compaction Conditions                      |      | 2.5kg Ramm       | er                          |                         |              |               |         |  |

- Top

Bottom


| _ de _             |                               | Checked / Approved | Checked / Approved Date 11/11/16 |            |  |         |  |  |
|--------------------|-------------------------------|--------------------|----------------------------------|------------|--|---------|--|--|
| (≯≮)               | PSL PSL                       |                    |                                  | PSL16/4906 |  |         |  |  |
| U K A S<br>TESTING |                               |                    | Client Ref:                      |            |  |         |  |  |
| 4043               | Professional Soils Laboratory |                    |                                  |            |  | 16-5027 |  |  |

BS 1377 : Part 4 : 1990

Hole Number: BH14 Top Depth (m): 4.00

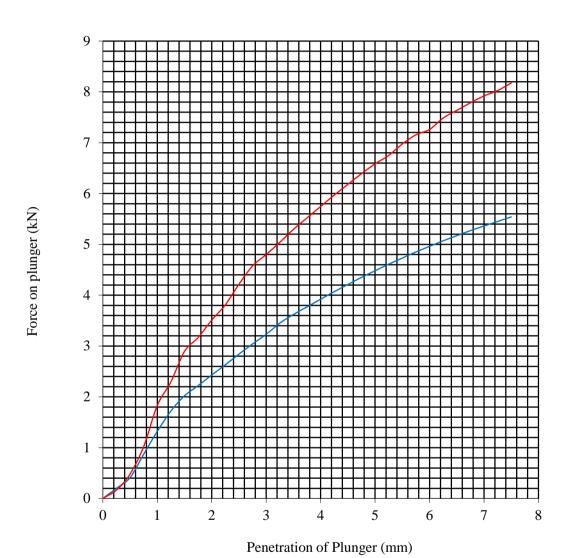
Sample Number: 6 Base Depth (m):

Sample Type: B



| Initial Sample Conditions                  |      | Sample Preparation |      | Final Moisture Content %                   |    | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------|--------------------------------------------|----|----------------|------|
| Moisture Content:                          | 13   | Surcharge Kg:      | 4.20 | Sample Top                                 | 13 | Sample Top     | 36.2 |
| Bulk Density Mg/m3:                        | 2.16 | Soaking Time hrs   | 0    | Sample Bottom                              | 13 | Sample Bottom  | 43.0 |
| Dry Density Mg/m3:                         | 1.91 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 20mm BS test sieve: |      | 5                  |      |                                            |    |                |      |
| Compaction Conditions 2.5kg Rammer         |      | er                 |      |                                            |    |                |      |

- Top


| _ de _           |                                | Checked / Approved | Checked / Approved Date 11/11/16 |             |  |         |  |  |  |
|------------------|--------------------------------|--------------------|----------------------------------|-------------|--|---------|--|--|--|
| (≯≮)             | PSL                            |                    |                                  | PSL16/4906  |  |         |  |  |  |
| U KAS<br>TESTING | Purchasianal Calla Laborataria |                    |                                  | Client Ref: |  |         |  |  |  |
| 4043             | Professional Soils Laboratory  |                    |                                  |             |  | 16-5027 |  |  |  |

BS 1377 : Part 4 : 1990

Hole Number: BH14 Top Depth (m): 4.00

Sample Number: 6 Base Depth (m):

Sample Type: B



| Initial Sample Conditions Sample Pro       |      | Sample Prepara   | ration Final Moisture Conten |                                            | tent % | nt % C.B.R. Value |      |
|--------------------------------------------|------|------------------|------------------------------|--------------------------------------------|--------|-------------------|------|
| Moisture Content:                          | 15   | Surcharge Kg:    | 4.20                         | Sample Top                                 | 15     | Sample Top        | 22.4 |
| Bulk Density Mg/m3:                        | 2.12 | Soaking Time hrs | 0                            | Sample Bottom                              | 15     | Sample Bottom     | 32.9 |
| Dry Density Mg/m3:                         | 1.84 | Swelling mm:     | 0.00                         | Remarks: See summary of soil descriptions. |        |                   |      |
| Percentage retained on 20mm BS test sieve: |      | 5                |                              |                                            |        |                   |      |
| Compaction Conditions                      |      | 2.5kg Ramm       | er                           |                                            |        |                   |      |

- Top

| <u></u>            |                               | Checked / Approved | Jes         | Date       |  | Contract No: |
|--------------------|-------------------------------|--------------------|-------------|------------|--|--------------|
| (≯≮) ▮             | PSL PSL                       |                    |             | PSL16/4906 |  |              |
| U K A S<br>TESTING |                               |                    | Client Ref: |            |  |              |
| 4043               | Professional Soils Laboratory |                    |             |            |  | 16-5027      |

## **MOISTURE CONDITION VALUE**

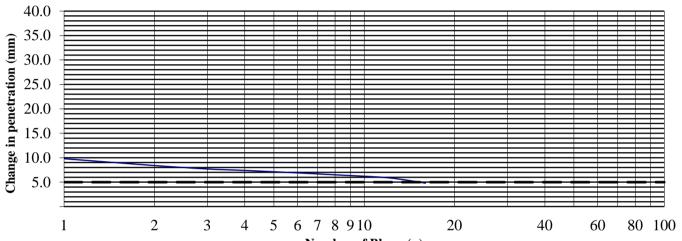
BS1377: Part 4: 1990 Clause 5.4

**Hole Number:** 

**BH14** 

**Top Depth (m):** 4.00

**Sample Number:** 


6

Base Depth (m):

Sample Type: B

| Material Retained on the 20mm BS Test Sieve (%):                     | 5                |
|----------------------------------------------------------------------|------------------|
| Interpretation of test curve is by the instection of 5mm change in p | enetration value |

### **MCV Determination**



### Number of Blows (n)

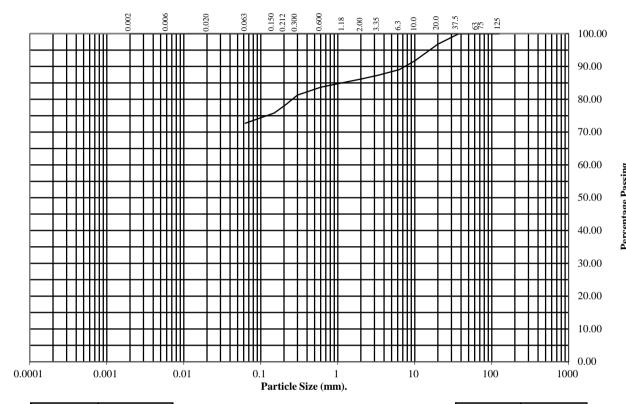
| Blows | Penetration | n to 4 n |
|-------|-------------|----------|
| (N)   | (mm)        | (mm)     |
| 1     | 84.0        | 9.8      |
| 2     | 79.2        | 8.4      |
| 3     | 76.0        | 7.7      |
| 4     | 74.2        | 7.4      |
| 6     | 72.0        | 6.9      |
| 8     | 70.8        | 6.5      |
| 12    | 68.3        | 5.9      |
| 16    | 66.8        | 4.8      |
| 24    | 65.1        |          |
| 32    | 64.3        |          |
| 48    | 62.4        |          |
| 64    | 62.0        |          |
| 96    |             |          |
| 128   |             |          |
| 192   |             |          |
| 256   |             |          |

### **Test Results.**

| Moisture Content (%) | 5.7  |
|----------------------|------|
| MCV                  | 11.8 |

| ************************************** | PSL                           |
|----------------------------------------|-------------------------------|
| UKAS<br>TESTING<br>4043                | Professional Soils Laboratory |

| Checked / Approved | She ! | Date | 11/11/16    | Contract No: |
|--------------------|-------|------|-------------|--------------|
|                    |       |      |             | PSL16/4906   |
| Arklow             |       |      | Client Ref: |              |
|                    |       |      |             | 16-5027      |


**BS1377 : Part 2 : 1990** 

Wet Sieve, Clause 9.2

Hole Number: BH14 Top Depth (m): 9.40

Sample Number: 13 Base Depth(m):

Sample Type: B



| BS Test | Percentage |  |
|---------|------------|--|
| Sieve   | Passing    |  |
| 125     | 100        |  |
| 75      | 100        |  |
| 63      | 100        |  |
| 37.5    | 100        |  |
| 20      | 97         |  |
| 10      | 92         |  |
| 6.3     | 89         |  |
| 3.35    | 87         |  |
| 2       | 86         |  |
| 1.18    | 85         |  |
| 0.6     | 84         |  |
| 0.3     | 81         |  |
| 0.212   | 78         |  |
| 0.15    | 76         |  |
| 0.063   | 73         |  |

| Soil                                   | Total               |
|----------------------------------------|---------------------|
| Fraction                               | Percentage          |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>14<br>13<br>73 |

Remarks:

See summary of soil descriptions.



Professional Soils Laboratory

| Checked / | Approved |
|-----------|----------|
|-----------|----------|

State

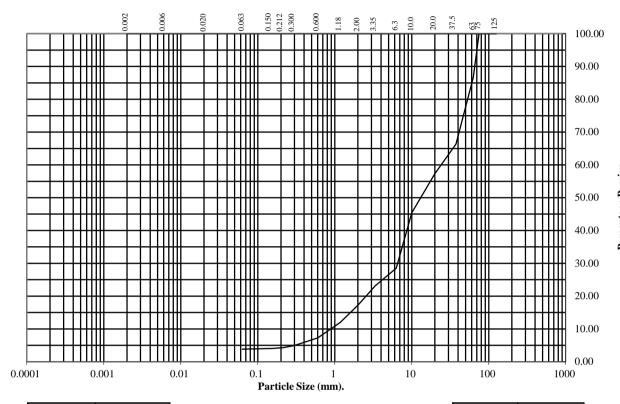
Date

11/11/16

Contract No: PSL16/4906

**Arklow** 

Client Ref: 16-5027


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH15D Top Depth (m): 0.20

Sample Number: 1 Base Depth(m): 1.60

Sample Type: B



| BS Test | Percentage |  |
|---------|------------|--|
| Sieve   | Passing    |  |
| 125     | 100        |  |
| 75      | 100        |  |
| 63      | 87         |  |
| 37.5    | 66         |  |
| 20      | 57         |  |
| 10      | 45         |  |
| 6.3     | 29         |  |
| 3.35    | 23         |  |
| 2       | 17         |  |
| 1.18    | 12         |  |
| 0.6     | 7          |  |
| 0.3     | 5          |  |
| 0.212   | 4          |  |
| 0.15    | 4          |  |
| 0.063   | 4          |  |

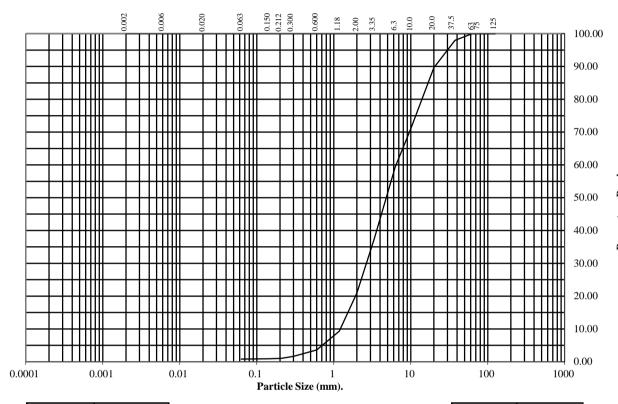
| Soil                                   | Total               |  |
|----------------------------------------|---------------------|--|
| Fraction                               | Percentage          |  |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 13<br>70<br>13<br>4 |  |

Remarks:

See summary of soil descriptions.



| Checked / Approved |  | Date | 11/11/16    | Contract No: |
|--------------------|--|------|-------------|--------------|
| Arklow             |  |      | PSL16/4906  |              |
|                    |  |      | Client Ref: |              |
|                    |  |      |             | 16-5027      |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH15D Top Depth (m): 1.60

Sample Number: 3 Base Depth(m): 2.60

Sample Type: B



| BS Test | Percentage |  |
|---------|------------|--|
| Sieve   | Passing    |  |
| 125     | 100        |  |
| 75      | 100        |  |
| 63      | 100        |  |
| 37.5    | 98         |  |
| 20      | 90         |  |
| 10      | 71         |  |
| 6.3     | 59         |  |
| 3.35    | 37         |  |
| 2       | 21         |  |
| 1.18    | 9          |  |
| 0.6     | 4          |  |
| 0.3     | 2          |  |
| 0.212   | 1          |  |
| 0.15    | 1          |  |
| 0.063   | 1          |  |

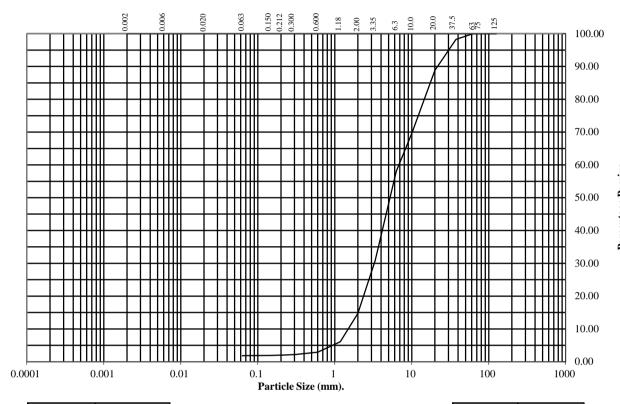
| Soil                                   | Total              |  |
|----------------------------------------|--------------------|--|
| Fraction                               | Percentage         |  |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>79<br>20<br>1 |  |

Remarks:

See summary of soil descriptions.



| Checked / Approved | Sher | Date | 11/11/16    | Contract No: |
|--------------------|------|------|-------------|--------------|
|                    |      |      |             | PSL16/4906   |
| Arklow             |      |      | Client Ref: |              |
|                    |      |      |             | 16-5027      |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH15D Top Depth (m): 4.10

Sample Number: 7 Base Depth(m): 5.60

Sample Type: B



| BS Test | Percentage |  |  |
|---------|------------|--|--|
| Sieve   | Passing    |  |  |
| 125     | 100        |  |  |
| 75      | 100        |  |  |
| 63      | 100        |  |  |
| 37.5    | 98         |  |  |
| 20      | 89         |  |  |
| 10      | 70         |  |  |
| 6.3     | 58         |  |  |
| 3.35    | 31         |  |  |
| 2       | 15         |  |  |
| 1.18    | 6          |  |  |
| 0.6     | 3          |  |  |
| 0.3     | 2          |  |  |
| 0.212   | 2          |  |  |
| 0.15    | 2          |  |  |
| 0.063   | 2          |  |  |

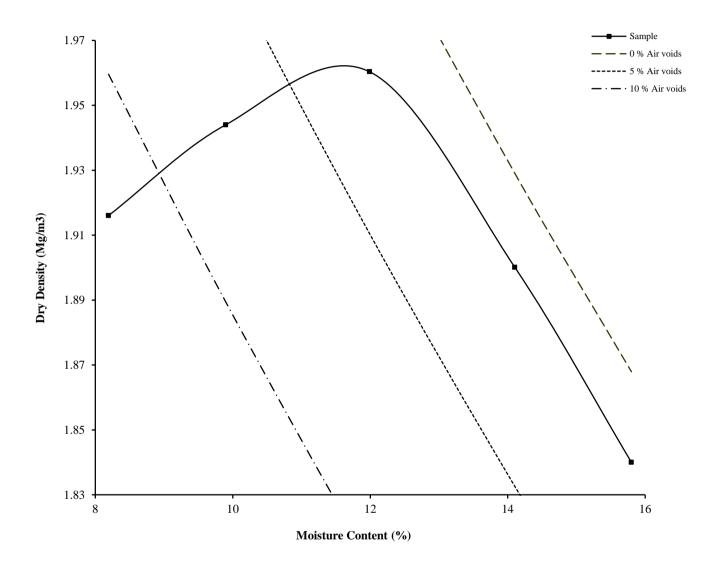
| Soil                                   | Total              |  |  |
|----------------------------------------|--------------------|--|--|
| Fraction                               | Percentage         |  |  |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>85<br>13<br>2 |  |  |

Remarks:

See summary of soil descriptions.



| Cnecked / Approved | Date | 11/11/16 | Contract No: |
|--------------------|------|----------|--------------|
| Arklow             |      |          | PSL16/4906   |
|                    |      |          | Client Ref:  |
|                    |      |          | 16-5027      |


## DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377: Part 4: 1990

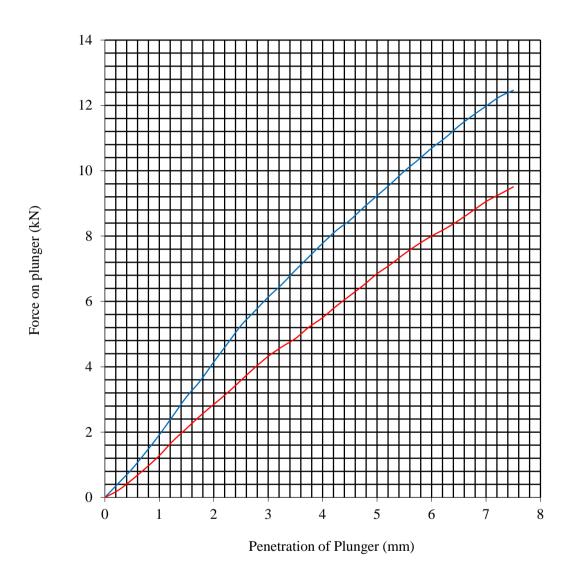
Hole Number: BH15D Top Depth (m): 4.10

Sample Number: 7 Base Depth (m): 5.60

Sample Type: B



| Initial Moisture Content:     |       | 8.2     | Method of Compaction:                   | 2.5Kg Rammer | Separate Samples |
|-------------------------------|-------|---------|-----------------------------------------|--------------|------------------|
| Particle Density (Mg/m3):     | 2.65  | Assumed | Material Retained on 37.5 mm Test Sieve | 2            |                  |
| Maximum Dry Density (Mg/m3):  |       | 1.96    | Material Retained on 20.0 mm Test Sieve | 9            |                  |
| Optimum Moisture Content (%): |       |         |                                         |              |                  |
| Remarks                       |       |         |                                         |              |                  |
| See summary of soil descrip   | tions |         |                                         |              |                  |


| _ de  | DSL.                          | Checked / Approved | Checked / Approved Date 11/11/16 |            |  |            |  |  |
|-------|-------------------------------|--------------------|----------------------------------|------------|--|------------|--|--|
| (≯∢)  |                               |                    |                                  | PSL16/4906 |  |            |  |  |
| U KAS | Professional Sails Laboratory |                    | Arklov                           | w          |  | Client Ref |  |  |
| 4043  | Professional Soils Laboratory |                    | 16-5027                          |            |  |            |  |  |

BS 1377: Part 4: 1990

Hole Number: BH15D Top Depth (m): 5.60

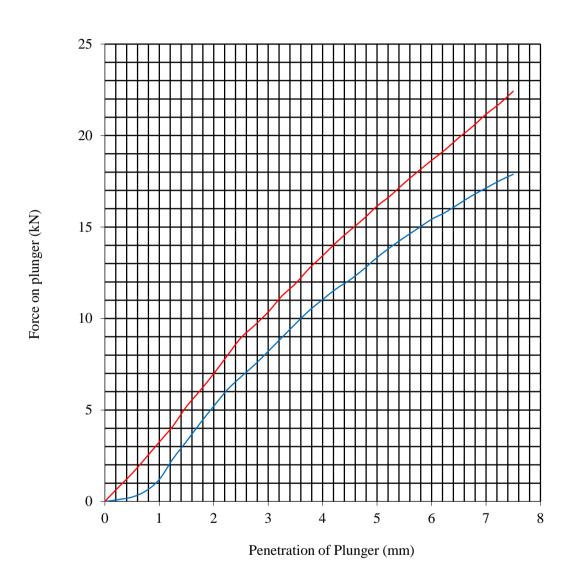
Sample Number: 9 Base Depth (m): 6.80

Sample Type: B



| <b>Initial Sample Conditions</b>  |                                            | Sample Preparation |      | Final Moisture Content %                   |     | C.B.R. Value % |      |
|-----------------------------------|--------------------------------------------|--------------------|------|--------------------------------------------|-----|----------------|------|
| Moisture Content:                 | 5.2                                        | Surcharge Kg:      | 4.20 | Sample Top                                 | 5.2 | Sample Top     | 46.2 |
| Bulk Density Mg/m3:               | 2.00                                       | Soaking Time hrs   | 0    | Sample Bottom                              | 5.3 | Sample Bottom  | 34.2 |
| Dry Density Mg/m3:                | 1.90                                       | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |     |                |      |
| Percentage retained on 2          | Percentage retained on 20mm BS test sieve: |                    |      |                                            |     |                |      |
| Compaction Conditions 2.5kg Ramme |                                            | er                 |      |                                            |     |                |      |

- Top


| _ de               | PSL                           | Checked / Approved | Jes     | Date        | 11/11/16 | Contract No: |  |
|--------------------|-------------------------------|--------------------|---------|-------------|----------|--------------|--|
| (≯≮)               |                               |                    |         |             |          |              |  |
| U K A S<br>TESTING | Businesis Calle Laboratore    |                    |         | Client Ref: |          |              |  |
| 4043               | Professional Soils Laboratory |                    | 16-5027 |             |          |              |  |

BS 1377: Part 4: 1990

Hole Number: BH15D Top Depth (m): 4.10

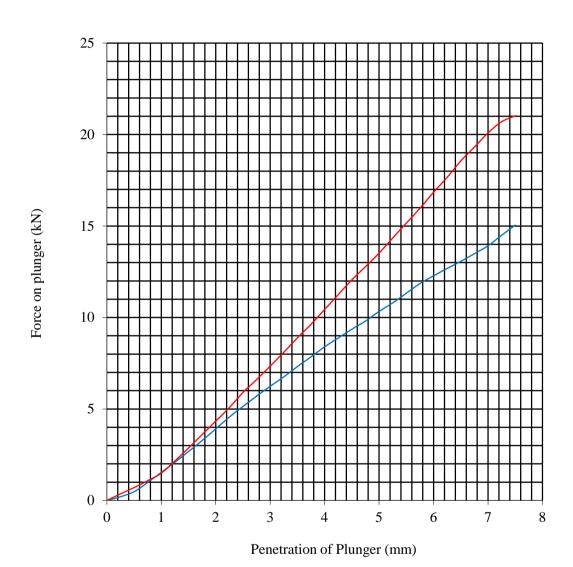
Sample Number: 7 Base Depth (m): 5.60

Sample Type: B



| Initial Sample Cond               | <b>Initial Sample Conditions</b> |                  | ation | Final Moisture Content %                   |    | C.B.R. Value % |      |
|-----------------------------------|----------------------------------|------------------|-------|--------------------------------------------|----|----------------|------|
| Moisture Content:                 | 10                               | Surcharge Kg:    | 4.20  | Sample Top                                 | 10 | Sample Top     | 66.7 |
| Bulk Density Mg/m3:               | 2.13                             | Soaking Time hrs | 0     | Sample Bottom                              | 10 | Sample Bottom  | 80.7 |
| Dry Density Mg/m3:                | 1.94                             | Swelling mm:     | 0.00  | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 2          | 20mm B                           | S test sieve:    | 11    |                                            |    |                |      |
| Compaction Conditions 2.5kg Ramme |                                  | er               |       |                                            |    |                |      |

- Top


| _ de               | PSL                           | Checked / Approved | Jes     | Date        | 11/11/16 | Contract No: |  |
|--------------------|-------------------------------|--------------------|---------|-------------|----------|--------------|--|
| (≯≮)               |                               |                    |         |             |          |              |  |
| U K A S<br>TESTING | Businesis Calle Laboratore    |                    |         | Client Ref: |          |              |  |
| 4043               | Professional Soils Laboratory |                    | 16-5027 |             |          |              |  |

BS 1377: Part 4: 1990

Hole Number: BH15D Top Depth (m): 4.10

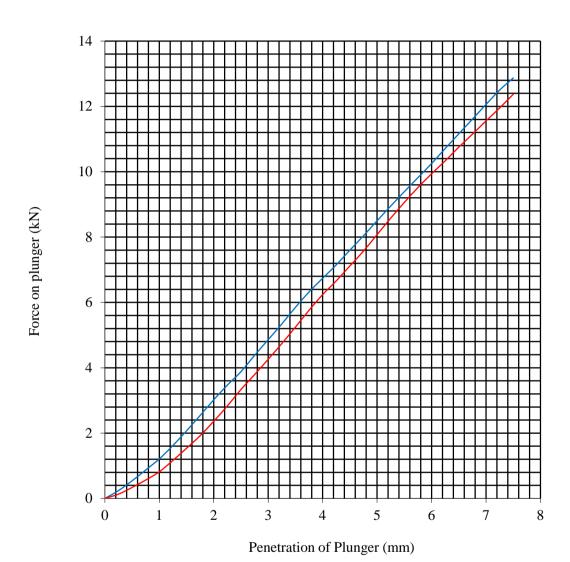
Sample Number: 7 Base Depth (m): 5.60

Sample Type: B



| Initial Sample Conditions Sa      |                                            | Sample Preparation |      | Final Moisture Content %                   |    | C.B.R. Value % |      |
|-----------------------------------|--------------------------------------------|--------------------|------|--------------------------------------------|----|----------------|------|
| Moisture Content:                 | 12                                         | Surcharge Kg:      | 4.20 | Sample Top                                 | 12 | Sample Top     | 51.7 |
| Bulk Density Mg/m3:               | 2.20                                       | Soaking Time hrs   | 0    | Sample Bottom                              | 12 | Sample Bottom  | 67.6 |
| Dry Density Mg/m3:                | 1.96                                       | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 2          | Percentage retained on 20mm BS test sieve: |                    |      |                                            |    |                |      |
| Compaction Conditions 2.5kg Rammo |                                            | er                 |      |                                            |    |                |      |

- Top


| _ de               | PSL PSL                       | Checked / Approved | Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan | Date       | 11/11/16 | Contract No: |
|--------------------|-------------------------------|--------------------|-----------------------------------------|------------|----------|--------------|
| (≯≮)               |                               |                    |                                         | PSL16/4906 |          |              |
| U K A S<br>TESTING | Business Called about an      |                    | Client Ref:                             |            |          |              |
| 4043               | Professional Soils Laboratory |                    | 16-5027                                 |            |          |              |

BS 1377: Part 4: 1990

Hole Number: BH15D Top Depth (m): 4.10

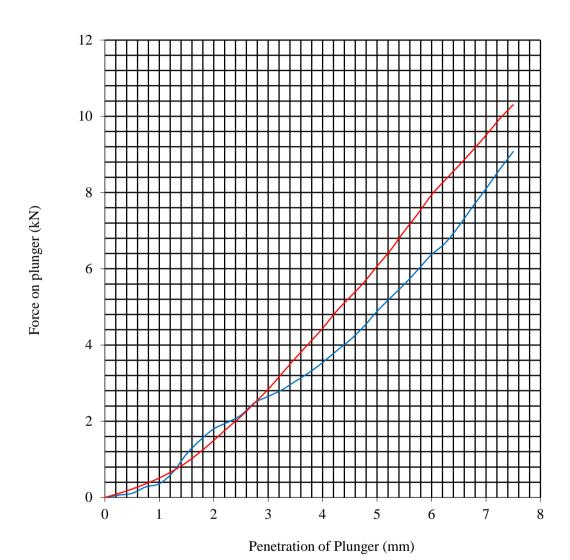
Sample Number: 7 Base Depth (m): 5.60

Sample Type: B



| Initial Sample Cond               | Initial Sample Conditions                  |                  | ation | Final Moisture Content %                   |    | C.B.R. Value % |      |
|-----------------------------------|--------------------------------------------|------------------|-------|--------------------------------------------|----|----------------|------|
| Moisture Content:                 | 14                                         | Surcharge Kg:    | 4.20  | Sample Top                                 | 14 | Sample Top     | 42.5 |
| Bulk Density Mg/m3:               | 2.17                                       | Soaking Time hrs | 0     | Sample Bottom                              | 14 | Sample Bottom  | 40.4 |
| Dry Density Mg/m3:                | 1.90                                       | Swelling mm:     | 0.00  | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 2          | Percentage retained on 20mm BS test sieve: |                  |       |                                            |    |                |      |
| Compaction Conditions 2.5kg Ramme |                                            | er               |       |                                            |    |                |      |

- Top


| _ de             | PSL                           | Checked / Approved | J.      | Date       | 11/11/16 | Contract No: |
|------------------|-------------------------------|--------------------|---------|------------|----------|--------------|
| (≯≮)             |                               |                    |         | PSL16/4906 |          |              |
| U KAS<br>TESTING | Purfeccional Calle Laboratory |                    | Arklov  | w          |          | Client Ref:  |
| 4043             | Professional Soils Laboratory |                    | 16-5027 |            |          |              |

BS 1377: Part 4: 1990

Hole Number: BH15D Top Depth (m): 4.10

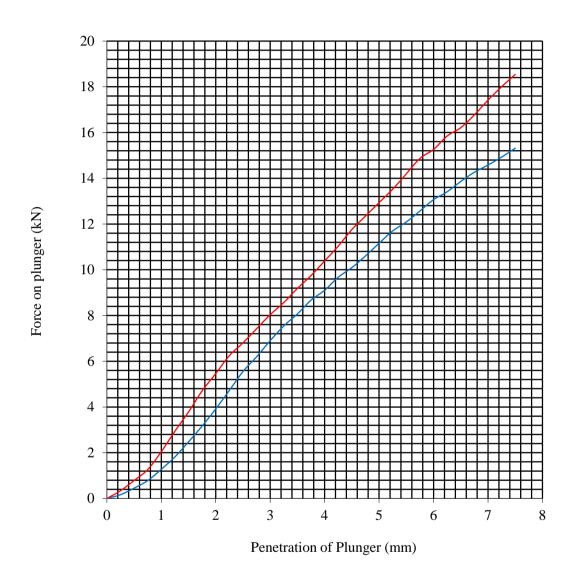
Sample Number: 7 Base Depth (m): 5.60

Sample Type: B



| Initial Sample Conditions         |                                              | Sample Preparation |      | Final Moisture Content %                   |    | C.B.R. Value % |      |
|-----------------------------------|----------------------------------------------|--------------------|------|--------------------------------------------|----|----------------|------|
| Moisture Content:                 | 16                                           | Surcharge Kg:      | 4.20 | Sample Top                                 | 16 | Sample Top     | 24.4 |
| Bulk Density Mg/m3:               | 2.13                                         | Soaking Time hrs   | 0    | Sample Bottom                              | 16 | Sample Bottom  | 30.3 |
| Dry Density Mg/m3:                | 1.84                                         | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |    |                |      |
| Percentage retained on 2          | Percentage retained on 20mm BS test sieve: 1 |                    |      |                                            |    |                |      |
| Compaction Conditions 2.5kg Ramme |                                              | er                 |      |                                            |    |                |      |

- Top


| <u></u>          | 701                           | Checked / Approved | J. Sheet | Date        | 11/11/16 | Contract No: |
|------------------|-------------------------------|--------------------|----------|-------------|----------|--------------|
| (≯≮)-            |                               |                    |          | PSL16/4906  |          |              |
| U KAS<br>TESTING |                               |                    |          | Client Ref: |          |              |
| 4043             | Professional Soils Laboratory |                    | 16-5027  |             |          |              |

BS 1377: Part 4: 1990

Hole Number: BH15D Top Depth (m): 4.10

Sample Number: 7 Base Depth (m): 5.60

Sample Type: B



| <b>Initial Sample Conditions</b>           |      | Sample Preparation |                         | Final Moisture Content % |        | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|-------------------------|--------------------------|--------|----------------|------|
| Moisture Content:                          | 8.2  | Surcharge Kg:      | 4.20                    | Sample Top               | 7.9    | Sample Top     | 55.8 |
| Bulk Density Mg/m3:                        | 2.07 | Soaking Time hrs   | 0                       | Sample Bottom            | 8.5    | Sample Bottom  | 64.7 |
| Dry Density Mg/m3: 1.92 Swelling mm:       |      | 0.00               | Remarks: See summary of | soil descrip             | tions. |                |      |
| Percentage retained on 20mm BS test sieve: |      | 11                 |                         |                          |        |                |      |
| Compaction Conditions 2.5kg Ramme          |      | er                 |                         |                          |        |                |      |

- Top

Bottom

| _ de               |                               | Checked / Approved | Jes | Date | 11/11/16    | Contract No: |
|--------------------|-------------------------------|--------------------|-----|------|-------------|--------------|
| (≯≮)               | (R) PSL                       |                    |     |      |             | PSL16/4906   |
| U K A S<br>TESTING |                               | Arklow             |     |      | Client Ref: |              |
| 4043               | Professional Soils Laboratory |                    |     |      |             | 16-5027      |

## **MOISTURE CONDITION VALUE**

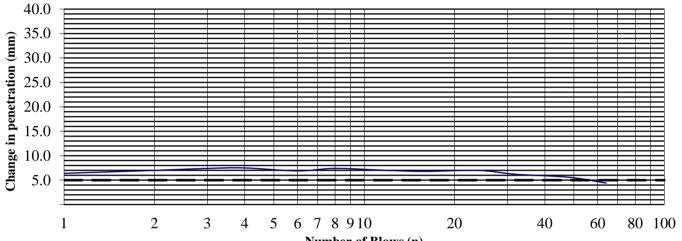
BS1377: Part 4: 1990 Clause 5.4

**Hole Number:** 

**BH15D** 

Top Depth (m): 4.10

**Sample Number:** 


7

**Base Depth (m):** 

**Sample Type:** В

| Material Retained on the 20mm BS Test Sieve (%):                                     | 11 |  |
|--------------------------------------------------------------------------------------|----|--|
| Interpretation of test curve is by the instection of 5mm change in penetration value |    |  |

## **MCV Determination**



## Number of Blows (n)

| Blows | Penetration | n to 4 n |
|-------|-------------|----------|
| (N)   | (mm)        | (mm)     |
| 1     | 83.7        | 6.4      |
| 2     | 80.6        | 7.0      |
| 3     | 78.8        | 7.4      |
| 4     | 77.3        | 7.5      |
| 6     | 75.1        | 6.9      |
| 8     | 73.6        | 7.4      |
| 12    | 71.4        | 7.0      |
| 16    | 69.8        | 6.8      |
| 24    | 68.2        | 7.0      |
| 32    | 66.2        | 6.2      |
| 48    | 64.4        | 5.6      |
| 64    | 63.0        | 4.4      |
| 96    | 61.2        |          |
| 128   | 60.0        |          |
| 192   | 58.8        |          |
| 256   | 58.6        |          |

## **Test Results.**

| Moisture Content (%) | 8    |
|----------------------|------|
| MCV                  | 17.4 |

| the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Checked / Approved            | Date | 11/11/16 | Contract No: |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|----------|--------------|------------|
| (≯∢) ▮                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |      |          |              | PSL16/4906 |
| UKAS<br>TESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arklow                        |      |          | Client Ref:  |            |
| 4043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Professional Soils Laboratory |      |          |              | 16-5027    |

## **MOISTURE CONDITION VALUE**

BS1377: Part 4: 1990 Clause 5.4

**Hole Number:** 

**BH15D** 

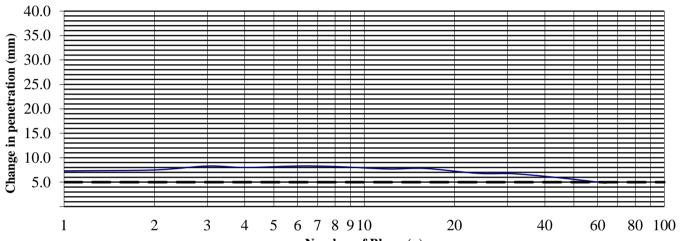
Top Depth (m):

5.60

**Contract No:** 

PSL16/4906 Client Ref: 16-5027

**Sample Number:** 


Q

Base Depth (m):

Sample Type: B

| Material Retained on the 20mm BS Test Sieve (%):                     | 12               |
|----------------------------------------------------------------------|------------------|
| Interpretation of test curve is by the instection of 5mm change in p | enetration value |

## **MCV Determination**



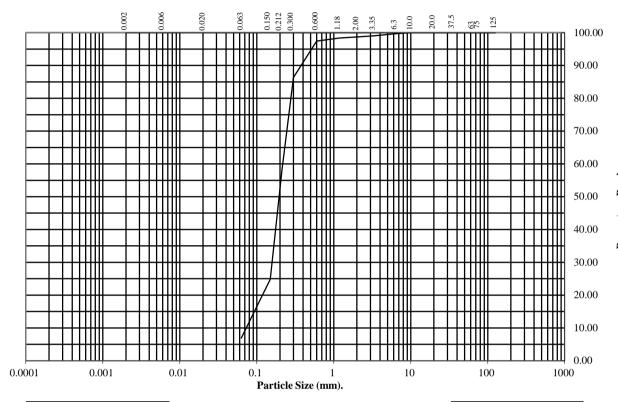
## Number of Blows (n)

| Blows | Penetration | n to 4 n |
|-------|-------------|----------|
| (N)   | (mm)        | (mm)     |
| 1     | 84.1        | 7.3      |
| 2     | 80.6        | 7.5      |
| 3     | 78.6        | 8.3      |
| 4     | 76.8        | 8.0      |
| 6     | 74.6        | 8.3      |
| 8     | 73.1        | 8.2      |
| 12    | 70.3        | 7.7      |
| 16    | 68.8        | 7.8      |
| 24    | 66.3        | 6.8      |
| 32    | 64.9        | 6.7      |
| 48    | 62.6        | 5.7      |
| 64    | 61.0        | 4.8      |
| 96    | 59.5        |          |
| 128   | 58.2        |          |
| 192   | 56.9        |          |
| 256   | 56.2        |          |

## **Test Results.**

| Moisture Content (%) | 5.2  |
|----------------------|------|
| MCV                  | 18.1 |

| cito _                  | PSL                           | Checked / Approved | J. See | Date | 11/11/16 |
|-------------------------|-------------------------------|--------------------|--------|------|----------|
| UKAS<br>TESTING<br>4043 | Professional Soils Laboratory |                    | Arklow |      |          |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH15D Top Depth (m): 8.50

Sample Number: 13 Base Depth(m): 10.00

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 100        |
| 20      | 100        |
| 10      | 100        |
| 6.3     | 100        |
| 3.35    | 99         |
| 2       | 99         |
| 1.18    | 98         |
| 0.6     | 97         |
| 0.3     | 86         |
| 0.212   | 58         |
| 0.15    | 25         |
| 0.063   | 7          |

| Soil                                   | Total             |
|----------------------------------------|-------------------|
| Fraction                               | Percentage        |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>1<br>92<br>7 |

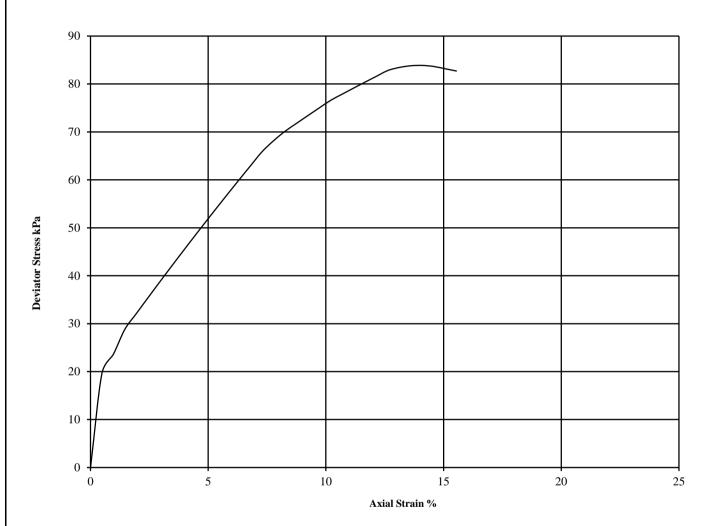
Remarks:

See summary of soil descriptions.



| Checked / Approved | Date        | 11/11/16 | Contract No: |
|--------------------|-------------|----------|--------------|
|                    |             |          | PSL16/4906   |
| . A                | Client Ref: |          |              |
|                    |             |          | 16-5027      |

## UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION


## WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377: Part7: 1990: Clause 8

Hole Number: BH15D Top Depth (m): 16.00

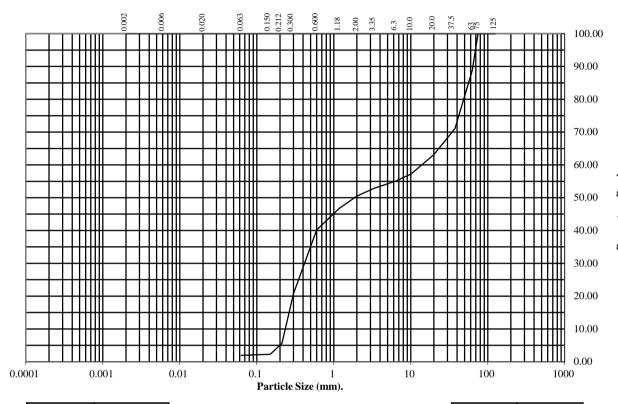
Sample Number: 28 Base Depth (m): 16.45

Sample Type U



| Diamet   | er (mm): | 102.0   | Height  | (mm):      | 210.0                     | Test:                                  | UU Sing | gle Stage | Remarks                           |
|----------|----------|---------|---------|------------|---------------------------|----------------------------------------|---------|-----------|-----------------------------------|
| Specimen | Moisture | Bulk    | Dry     | Cell       | Corr. Max.                | Shear                                  | Failure | Mode      | Undisturbed Sample                |
|          | Content  | Density | Density | Pressure   | Deviator                  | Strength                               | Strain  | of        | Sample taken from top of tube     |
|          | (%)      | (Mg/m3) | (Mg/m3) | (kPa)      | Stress                    | Cu                                     | (%)     | Failure   | Rate of strain = 2 %/min          |
|          |          |         |         |            | (kPa)                     | (kPa)                                  |         |           | Latex Membrane used 0.2 mm thick, |
|          |          |         |         | $\theta_3$ | $(\theta_1 - \theta_3)_f$ | $^{1}/_{2}(\theta_{1}-\theta_{3})_{f}$ |         |           | Correction applied 0.35           |
| 1        | 27       | 2.01    | 1.58    | 320        | 84                        | 42                                     | 14.1    | Plastic   | See summary of soil descriptions. |

| cia<br>Cia                                | Det                           | Checked / Approved | J. See | Date       | 11/11/16 | Contract No: |
|-------------------------------------------|-------------------------------|--------------------|--------|------------|----------|--------------|
| (><)                                      |                               |                    |        | PSL16/4906 |          |              |
| UKAS  UKAS  Drofoscional Soils Laboratory |                               | Client Ref:        |        |            |          |              |
| 4043                                      | Professional Soils Laboratory |                    |        |            |          | 16-5027      |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH16 Top Depth (m): 0.50

Sample Number: 3 Base Depth(m): 1.20

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 89         |
| 37.5    | 71         |
| 20      | 63         |
| 10      | 57         |
| 6.3     | 55         |
| 3.35    | 53         |
| 2       | 50         |
| 1.18    | 47         |
| 0.6     | 40         |
| 0.3     | 21         |
| 0.212   | 6          |
| 0.15    | 2          |
| 0.063   | 2          |

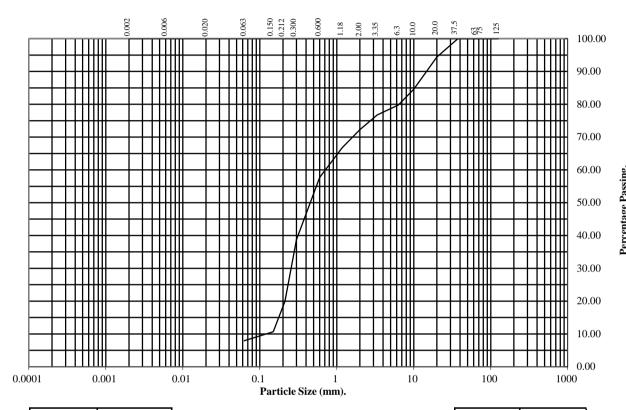
| Soil                                   | Total               |
|----------------------------------------|---------------------|
| Fraction                               | Percentage          |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 11<br>39<br>48<br>2 |

Remarks:

See summary of soil descriptions.



| Checked / Approved | Date        | 11/11/16 | Contract No: |
|--------------------|-------------|----------|--------------|
|                    | PSL16/4906  |          |              |
|                    | Client Ref: |          |              |
|                    |             |          | 16-5027      |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH16 Top Depth (m): 2.00

Sample Number: 7 Base Depth(m): 3.00

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 100        |
| 20      | 94         |
| 10      | 85         |
| 6.3     | 80         |
| 3.35    | 77         |
| 2       | 72         |
| 1.18    | 67         |
| 0.6     | 58         |
| 0.3     | 39         |
| 0.212   | 20         |
| 0.15    | 11         |
| 0.063   | 8          |

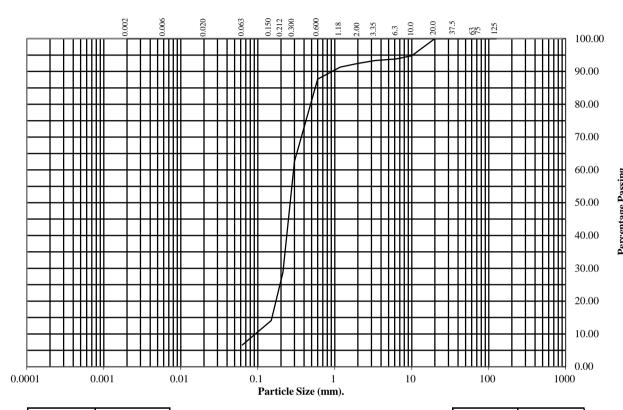
| Soil                                   | Total              |
|----------------------------------------|--------------------|
| Fraction                               | Percentage         |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>28<br>64<br>8 |

Remarks:

See summary of soil descriptions.

| (≱≮)                    | <b>PSL</b>                    |
|-------------------------|-------------------------------|
| UKAS<br>TESTING<br>4043 | Professional Soils Laboratory |

| Cnecked / Approved | - Annual Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t | Date | 11/11/16 | Contract No: |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|--------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | PSL16/4906   |
|                    | Client Ref:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |          |              |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | 16-5027      |


BS1377: Part 2: 1990

Wet Sieve, Clause 9.2

Hole Number: BH16 Top Depth (m): 3.00

Sample Number: 11 Base Depth(m): 4.50

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 100        |
| 20      | 100        |
| 10      | 95         |
| 6.3     | 94         |
| 3.35    | 93         |
| 2       | 92         |
| 1.18    | 91         |
| 0.6     | 88         |
| 0.3     | 63         |
| 0.212   | 29         |
| 0.15    | 14         |
| 0.063   | 7          |

| Soil                                   | Total             |
|----------------------------------------|-------------------|
| Fraction                               | Percentage        |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>8<br>85<br>7 |

Remarks:

See summary of soil descriptions.



| - | Checked / Approved |
|---|--------------------|
|   |                    |
|   |                    |

and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th

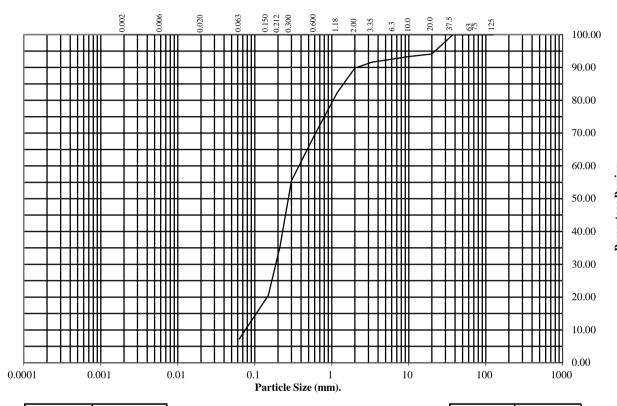
Date 1

11/11/16

Contract No: PSL16/4906

Arklow

Client Ref: 16-5027


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: BH16 Top Depth (m): 7.50

Sample Number: 16 Base Depth(m): 8.50

Sample Type: B



| BS Test | Percentage |
|---------|------------|
| Sieve   | Passing    |
| 125     | 100        |
| 75      | 100        |
| 63      | 100        |
| 37.5    | 100        |
| 20      | 94         |
| 10      | 93         |
| 6.3     | 93         |
| 3.35    | 92         |
| 2       | 90         |
| 1.18    | 82         |
| 0.6     | 69         |
| 0.3     | 55         |
| 0.212   | 35         |
| 0.15    | 20         |
| 0.063   | 7          |

| Soil                                   | Total              |
|----------------------------------------|--------------------|
| Fraction                               | Percentage         |
| Cobbles<br>Gravel<br>Sand<br>Silt/Clay | 0<br>10<br>83<br>7 |

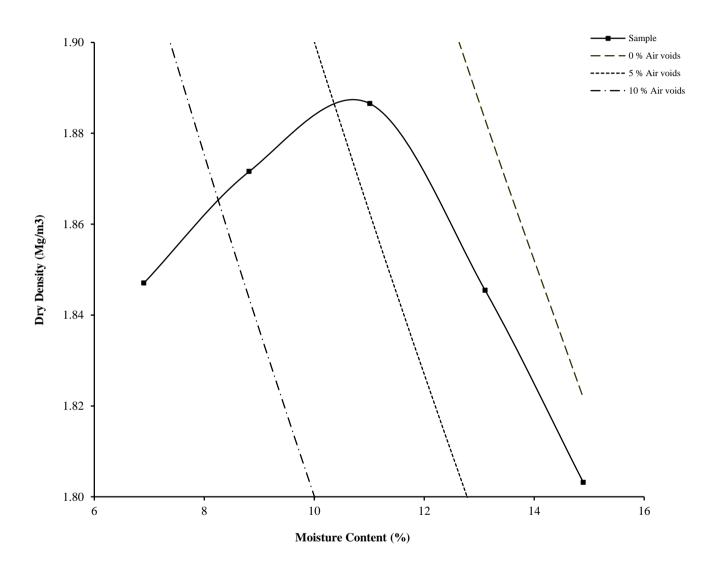
Remarks:

See summary of soil descriptions.

| (*\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\fint}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f{ | P              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| UKAS<br>TESTING<br>4043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Professional S |

| PSL                        |  |
|----------------------------|--|
| fessional Soils Laboratory |  |

| Checked / Approved | Date        | 11/11/16 | Contract No: |
|--------------------|-------------|----------|--------------|
|                    |             |          | PSL16/4906   |
|                    | Client Ref: |          |              |
|                    |             |          | 16-5027      |


## DRY DENSITY / MOISTURE CONTENT RELATIONSHIP

BS 1377: Part 4: 1990

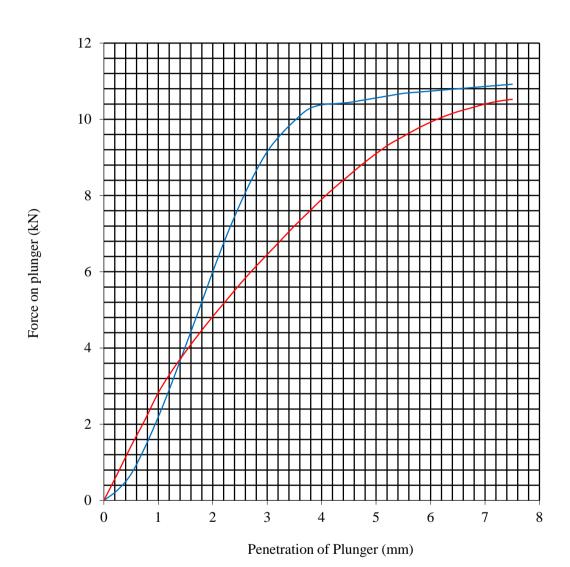
Hole Number: BH16 Top Depth (m): 7.50

Sample Number: 16 Base Depth (m): 8.50

Sample Type: B



| Initial Moisture Content:        |      | 15      | Method of Compaction:                        | Separate Samples |   |  |  |
|----------------------------------|------|---------|----------------------------------------------|------------------|---|--|--|
| Particle Density (Mg/m3): 2.5    |      | Assumed | Material Retained on 37.5 mm Test Sieve (%): |                  | 0 |  |  |
| Maximum Dry Density (Mg/m3):     |      | 1.89    | Material Retained on 20.0 mm Test Sieve (%): |                  | 6 |  |  |
| Optimum Moisture Content         | (%): | 11      |                                              |                  |   |  |  |
| Remarks                          |      |         |                                              |                  |   |  |  |
| See summary of soil descriptions |      |         |                                              |                  |   |  |  |


| <u></u>            |                               | Checked / Approved | Sheet      | Date | 11/11/16 | Contract No. |
|--------------------|-------------------------------|--------------------|------------|------|----------|--------------|
| (><)               |                               |                    | PSL16/4906 |      |          |              |
| U K A S<br>TESTING | Professional Called abandons  |                    | Client Ref |      |          |              |
| 4043               | Professional Soils Laboratory |                    |            |      |          | 16-5027      |

BS 1377: Part 4: 1990

Hole Number: BH16 Top Depth (m): 7.50

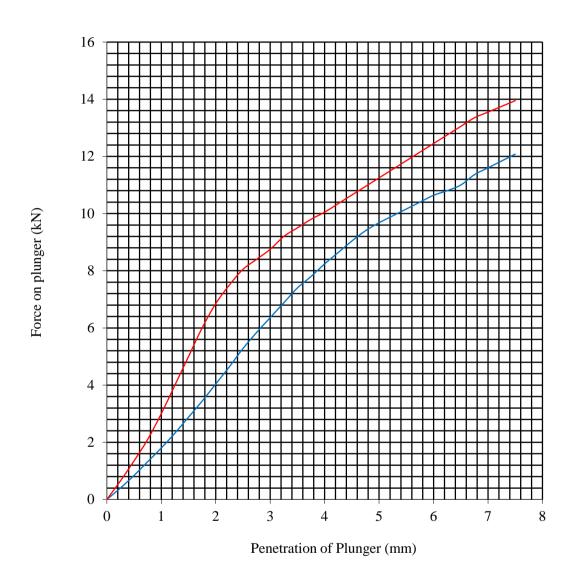
Sample Number: 16 Base Depth (m): 8.50

Sample Type: B



| <b>Initial Sample Conditions</b>           |      | Sample Preparation |      | Final Moisture Content %                   |     | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------|--------------------------------------------|-----|----------------|------|
| Moisture Content:                          | 6.9  | Surcharge Kg:      | 4.20 | Sample Top                                 | 6.7 | Sample Top     | 58.9 |
| Bulk Density Mg/m3:                        | 1.97 | Soaking Time hrs   | 0    | Sample Bottom                              | 7.1 | Sample Bottom  | 45.5 |
| Dry Density Mg/m3:                         | 1.85 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |     |                |      |
| Percentage retained on 20mm BS test sieve: |      | 6                  |      |                                            |     |                |      |
| Compaction Conditions 2.5kg Ramme          |      | er                 |      |                                            |     |                |      |

- Top


| _ de               | PSL                           | Checked / Approved | Checked / Approved Date 11/11/16 |            |  |  |  |  |
|--------------------|-------------------------------|--------------------|----------------------------------|------------|--|--|--|--|
| (≯≮)               |                               |                    |                                  | PSL16/4906 |  |  |  |  |
| U K A S<br>TESTING | Businesis Calle Laboratore    |                    | Client Ref:                      |            |  |  |  |  |
| 4043               | Professional Soils Laboratory |                    | 16-5027                          |            |  |  |  |  |

BS 1377 : Part 4 : 1990

Hole Number: BH16 Top Depth (m): 7.50

Sample Number: 16 Base Depth (m): 8.50

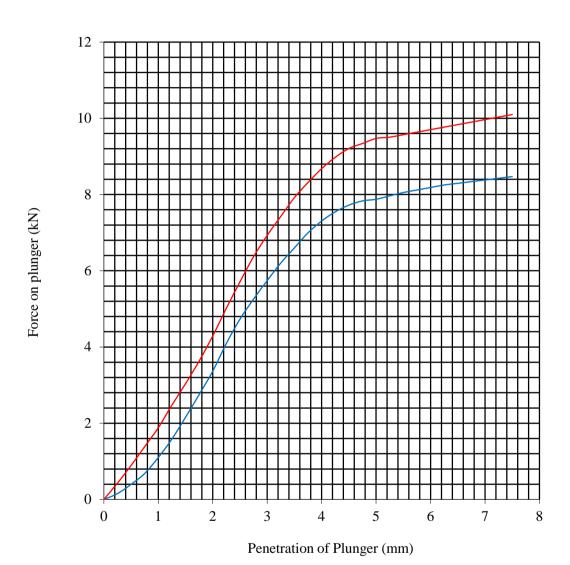
Sample Type: B



| Initial Sample Conditions                  |      | Sample Preparation |      | Final Moisture Content %                   |     | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------|--------------------------------------------|-----|----------------|------|
| Moisture Content:                          | 8.8  | Surcharge Kg:      | 4.20 | Sample Top                                 | 8.7 | Sample Top     | 48.4 |
| Bulk Density Mg/m3:                        | 2.03 | Soaking Time hrs   | 0    | Sample Bottom                              | 8.9 | Sample Bottom  | 61.0 |
| Dry Density Mg/m3:                         | 1.87 | Swelling mm:       | 0.00 | Remarks: See summary of soil descriptions. |     |                |      |
| Percentage retained on 20mm BS test sieve: |      | 6                  |      |                                            |     |                |      |
| Compaction Conditions 2.5kg Ramme          |      | er                 |      |                                            |     |                |      |

- Top

Bottom


| _ de _             | Det                           | Checked / Approved | Jan 1940    | Date | 11/11/16 | Contract No: |
|--------------------|-------------------------------|--------------------|-------------|------|----------|--------------|
| (≯≮)               | PSL                           |                    | PSL16/4906  |      |          |              |
| U K A S<br>TESTING | Businesis Calle Laboratore    |                    | Client Ref: |      |          |              |
| 4043               | Professional Soils Laboratory |                    | 16-5027     |      |          |              |

BS 1377: Part 4: 1990

Hole Number: BH16 Top Depth (m): 7.50

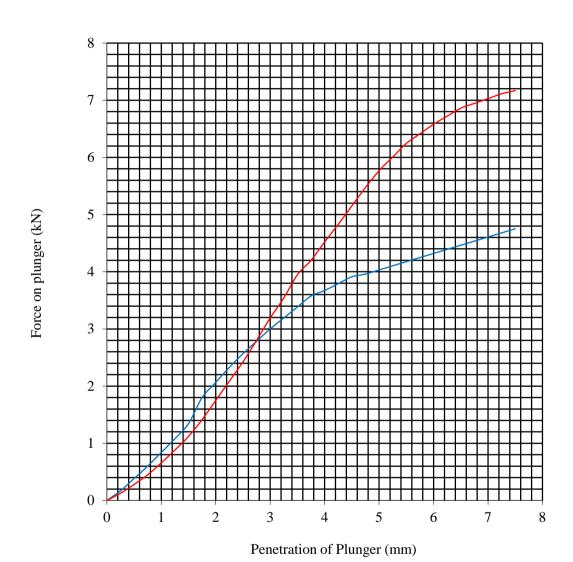
Sample Number: 16 Base Depth (m): 8.50

Sample Type: B



| <b>Initial Sample Conditions</b>           |      | Sample Preparation |      | Final Moisture Content % |              | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------|--------------------------|--------------|----------------|------|
| Moisture Content:                          | 11   | Surcharge Kg:      | 4.20 | Sample Top               | 11           | Sample Top     | 39.4 |
| Bulk Density Mg/m3:                        | 2.10 | Soaking Time hrs   | 0    | Sample Bottom            | 11           | Sample Bottom  | 47.4 |
| Dry Density Mg/m3: 1.89 Swelling mm: (     |      |                    | 0.00 | Remarks: See summary of  | soil descrip | tions.         |      |
| Percentage retained on 20mm BS test sieve: |      |                    | 6    |                          |              |                |      |
| Compaction Conditions 2.5kg Ramm           |      | er                 |      |                          |              |                |      |

- Top


| _ de _             | PSL                           | Checked / Approved | Jan 1940 | Date | 11/11/16 | Contract No: |
|--------------------|-------------------------------|--------------------|----------|------|----------|--------------|
| (≯≮)               |                               |                    |          |      |          |              |
| U K A S<br>TESTING | Businesis Calle Laboratore    |                    | Arklow   |      |          |              |
| 4043               | Professional Soils Laboratory |                    | 16-5027  |      |          |              |

BS 1377: Part 4: 1990

Hole Number: BH16 Top Depth (m): 7.50

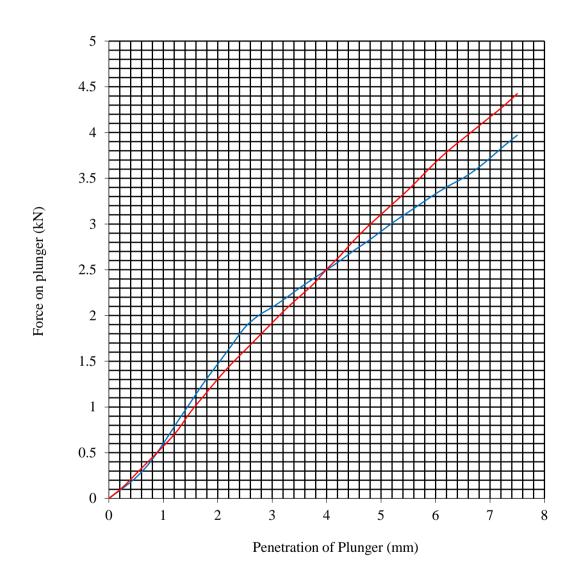
Sample Number: 16 Base Depth (m): 8.50

Sample Type: B



| <b>Initial Sample Conditions</b>           |      | Sample Preparation |                                                      | Final Moisture Content % |    | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------------------------------------------------------|--------------------------|----|----------------|------|
| Moisture Content:                          | 13   | Surcharge Kg:      | 4.20                                                 | Sample Top               | 14 | Sample Top     | 20.2 |
| Bulk Density Mg/m3:                        | 2.09 | Soaking Time hrs   | 0                                                    | Sample Bottom            | 13 | Sample Bottom  | 28.8 |
| Dry Density Mg/m3:                         | 1.85 | Swelling mm:       | elling mm: 0.00 Remarks: See summary of soil descrip |                          |    | tions.         |      |
| Percentage retained on 20mm BS test sieve: |      |                    | 6                                                    |                          |    |                |      |
| Compaction Conditions 2.5kg Ramm           |      | er                 |                                                      |                          |    |                |      |

- Top


| _ de               | PST.                          | Checked / Approved | Jes     | Date | 11/11/16 | Contract No: |
|--------------------|-------------------------------|--------------------|---------|------|----------|--------------|
| (≯≮)               |                               |                    |         |      |          |              |
| U K A S<br>TESTING | Businesis Calle Laboratore    |                    | Arklow  |      |          |              |
| 4043               | Professional Soils Laboratory |                    | 16-5027 |      |          |              |

BS 1377 : Part 4 : 1990

Hole Number: BH16 Top Depth (m): 7.50

Sample Number: 16 Base Depth (m): 8.50

Sample Type: B



| <b>Initial Sample Conditions</b>           |      | Sample Preparation |      | Final Moisture Content % |              | C.B.R. Value % |      |
|--------------------------------------------|------|--------------------|------|--------------------------|--------------|----------------|------|
| Moisture Content:                          | 15   | Surcharge Kg:      | 4.20 | Sample Top               | 15           | Sample Top     | 14.6 |
| Bulk Density Mg/m3:                        | 2.06 | Soaking Time hrs   | 0    | Sample Bottom            | 15           | Sample Bottom  | 15.5 |
| Dry Density Mg/m3: 1.80 Swelling mm:       |      |                    | 0.00 | Remarks: See summary of  | soil descrip | otions.        |      |
| Percentage retained on 20mm BS test sieve: |      |                    | 6    |                          |              |                |      |
| Compaction Conditions 2.5kg Ramm           |      | er                 |      |                          |              |                |      |

- Top

Bottom

| _ dia _          | PSL C                         | Checked / Approved | Jes | Date | 11/11/16 | Contract No: |
|------------------|-------------------------------|--------------------|-----|------|----------|--------------|
| (≯≮)             |                               |                    |     |      |          |              |
| U KAS<br>TESTING | Business Collede beautions    | Arklow             |     |      |          | Client Ref:  |
| 4043             | Professional Soils Laboratory |                    |     |      |          | 16-5027      |

## **MOISTURE CONDITION VALUE**

BS1377: Part 4: 1990 Clause 5.4

**Hole Number:** 

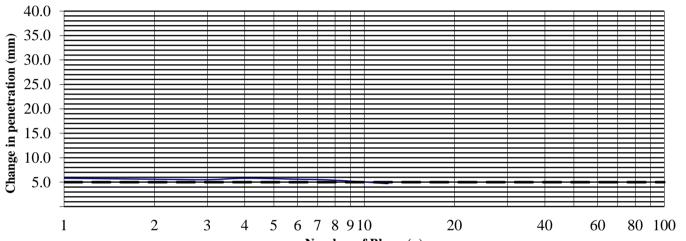
**BH16** 

**Top Depth (m):** 7.50

**Sample Number:** 

16

Base Depth (m): 8.


8.50

Sample Type:

В

| Material Retained on the 20mm BS Test Sieve (%):                                     | 6 |  |  |  |  |  |
|--------------------------------------------------------------------------------------|---|--|--|--|--|--|
| Interpretation of test curve is by the instection of 5mm change in penetration value |   |  |  |  |  |  |

## MCV Determination



## Number of Blows (n)

| Blows | Penetration | n to 4 n |
|-------|-------------|----------|
| (N)   | (mm)        | (mm)     |
| 1     | 79.5        | 5.8      |
| 2     | 76.5        | 5.6      |
| 3     | 74.8        | 5.5      |
| 4     | 73.7        | 5.8      |
| 6     | 71.9        | 5.6      |
| 8     | 70.9        | 5.4      |
| 12    | 69.3        | 4.7      |
| 16    | 67.9        |          |
| 24    | 66.3        |          |
| 32    | 65.5        |          |
| 48    | 64.6        |          |
| 64    |             |          |
| 96    |             |          |
| 128   |             |          |
| 192   |             |          |
| 256   |             |          |

## **Test Results.**

| Moisture Content (%) | 15   |
|----------------------|------|
| MCV                  | 10.4 |

| ab _             |                               | Checked / Approved   | Sleet       | Date       | 11/11/16 | Contract No: |
|------------------|-------------------------------|----------------------|-------------|------------|----------|--------------|
| (≯≮)             |                               |                      |             | PSL16/4906 |          |              |
| U KAS<br>TESTING | Professional Calls Laborators | $\mathbf{A}^{\circ}$ | Client Ref: |            |          |              |
| 4043             | Professional Soils Laboratory |                      | 16-5027     |            |          |              |



# Certificate of Analysis

Certificate Number 16-82225

31-Oct-16

Client Professional Soils Laboratory Ltd 5/7 Hexthorpe Road Hexthorpe DN4 OAR

Our Reference 16-82225

Client Reference PSL16/4906

Order No (not supplied)

Contract Title Arklow

Description 1 Soil sample, 2 Water samples.

Date Received 26-Oct-16

Date Started 26-Oct-16

Date Completed 31-Oct-16

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Rob Brown Business Manager

2 L Q.





# **Summary of Chemical Analysis Soil Samples**

Our Ref 16-82225 Client Ref PSL16/4906 Contract Title Arklow

| _             |         |
|---------------|---------|
| Lab No        | 1073971 |
| Sample ID     | BH15D   |
| Depth         | 2.60    |
| Other ID      |         |
| Sample Type   | SOIL    |
| Sampling Date | n/s     |
| Sampling Time | n/s     |

| Test                            | Method      | LOD | Units |     |
|---------------------------------|-------------|-----|-------|-----|
| Inorganics                      |             | •   |       | ·   |
| рН                              | DETSC 2008# |     |       | 8.3 |
| Sulphate Aqueous Extract as SO4 | DETSC 2076# | 10  | mg/l  | 300 |



# **Summary of Chemical Analysis Water Samples**

Our Ref 16-82225
Client Ref PSL16/4906
Contract Title Arklow

| Lab No        | 1073970 | 1073972 |
|---------------|---------|---------|
| Sample ID     | BH15A   | BH16    |
| Depth         | 0.80    | 2.10    |
| Other ID      |         |         |
| Sample Type   | WATER   | WATER   |
| Sampling Date | n/s     | n/s     |
| Sampling Time | n/s     | n/s     |

| Test            | Method     | LOD | Units |     |     |
|-----------------|------------|-----|-------|-----|-----|
| Inorganics      |            |     |       |     |     |
| рН              | DETSC 2008 |     |       | 9.2 | 7.3 |
| Sulphate as SO4 | DETSC 2055 | 0.1 | mg/l  | 380 | 160 |

Key: n/s -not supplied. Page 3 of 4



## Information in Support of the Analytical Results

Our Ref 16-82225 Client Ref PSL16/4906 Contract Arklow

#### **Containers Received & Deviating Samples**

|      | ,    | ourripic is      | oup.cu | Containers recoursed | moraning time exceeded for tests                    | 10010 |
|------|------|------------------|--------|----------------------|-----------------------------------------------------|-------|
| 1073 | 3970 | BH15A 0.80 WATER |        | PB 1L                | Sample date+time not supplied, Anions (30 days),    |       |
|      |      |                  |        |                      | pH/Cond/TDS (7 days)                                |       |
| 1073 | 3971 | BH15D 2.60 SOIL  |        | PT 500ml             | Sample date not supplied, Anions 2:1 (365 days), pH |       |
|      |      |                  |        |                      | + Conductivity (7 days)                             |       |
| 1073 | 3972 | BH16 2.10 WATER  |        | PB 1L                | Sample date+time not supplied, Anions (30 days),    |       |
|      |      |                  |        |                      | pH/Cond/TDS (7 days)                                |       |

Key: P-Plastic B-Bottle T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

#### **Soil Analysis Notes**

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

#### **Disposal**

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months





Appendix C Environmental Laboratory Test Results





Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

# **Final Report**

**Report No.:** 16-25458-1

Initial Date of Issue: 31-Oct-2016

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Andy Garne

Brian Mooney Colm Hurley Darren O'Mahony

Ian Holley
Lucy Peaker
Mark Nyhan
Matthew Gilbert
Neil Haggan
Paul Dunlop
Paul McNamara
Stephen Franey
Stephen Watson

**Project** 16-5027 Arklow

Quotation No.: Date Received: 20-Oct-2016

Order No.: Date Instructed: 20-Oct-2016

No. of Samples: 6

Turnaround (Wkdays): 7 Results Due: 28-Oct-2016

Date Approved: 31-Oct-2016

Approved By:

**Details:** Glynn Harvey, Laboratory Manager



| Project. 16-3027 Arkiow      |             |         |           |         |          |            |              |                 |               |
|------------------------------|-------------|---------|-----------|---------|----------|------------|--------------|-----------------|---------------|
| Chemtest Job No:             | 16-25458    |         |           |         |          |            | Landfill W   | /aste Acceptand | ce Criteria   |
| Chemtest Sample ID:          | 367620      |         |           |         |          |            |              | Limits          |               |
| Sample Ref:                  | BH12        |         |           |         |          |            |              | Stable, Non-    |               |
| Sample ID:                   |             |         |           |         |          |            |              | reactive        | Hazardous     |
| Top Depth(m):                | 1.0         |         |           |         |          |            | Inert Waste  | hazardous       | Waste         |
| Bottom Depth(m):             |             |         |           |         |          |            | Landfill     | waste in non-   | Landfill      |
| Sampling Date:               | 19-Oct-2016 |         |           |         |          |            |              | hazardous       |               |
| Determinand                  | SOP         | Accred. | Units     |         |          |            |              | Landfill        |               |
| Total Organic Carbon         | 2625        | U       | %         |         |          | 2.4        | 3            | 5               | 6             |
| Loss On Ignition             | 2610        | U       | %         |         |          | 1.9        |              |                 | 10            |
| Total BTEX                   | 2760        | U       | mg/kg     |         |          | < 0.010    | 6            |                 |               |
| Total PCBs (7 Congeners)     | 2815        | U       | mg/kg     |         |          | < 0.10     | 1            |                 |               |
| TPH Total WAC (Mineral Oil)  | 2670        | U       | mg/kg     |         |          | 62         | 500          |                 |               |
| Total (Of 17) PAH's          | 2700        | N       | mg/kg     |         |          | 92         | 100          |                 |               |
| рН                           | 2010        | U       |           |         |          | 8.0        |              | >6              |               |
| Acid Neutralisation Capacity | 2015        | N       | mol/kg    |         |          | 0.022      |              | To evaluate     | To evaluate   |
| Eluate Analysis              |             |         | 2:1       | 8:1     | 2:1      | Cumulative | Limit values | for compliance  | leaching test |
|                              |             |         | mg/l      | mg/l    | mg/kg    | mg/kg 10:1 | using BS     | EN 12457-3 at L | _/S 10 l/kg   |
| Arsenic                      | 1450        | U       | 0.0022    | 0.0034  | < 0.050  | < 0.050    | 0.5          | 2               | 25            |
| Barium                       | 1450        | U       | 0.020     | 0.029   | < 0.50   | < 0.50     | 20           | 100             | 300           |
| Cadmium                      | 1450        | U       | 0.00026   | 0.00044 | < 0.010  | < 0.010    | 0.04         | 1               | 5             |
| Chromium                     | 1450        | U       | < 0.0010  | 0.0096  | < 0.050  | 0.083      | 0.5          | 10              | 70            |
| Copper                       | 1450        | U       | 0.0034    | 0.0036  | < 0.050  | < 0.050    | 2            | 50              | 100           |
| Mercury                      | 1450        | U       | < 0.00050 | 0.00065 | < 0.0010 | 0.0056     | 0.01         | 0.2             | 2             |
| Molybdenum                   | 1450        | U       | 0.0069    | 0.0081  | < 0.050  | 0.079      | 0.5          | 10              | 30            |
| Nickel                       | 1450        | U       | 0.0013    | 0.0017  | < 0.050  | < 0.050    | 0.4          | 10              | 40            |
| Lead                         | 1450        | U       | < 0.0010  | 0.0034  | < 0.010  | 0.029      | 0.5          | 10              | 50            |
| Antimony                     | 1450        | U       | 0.0018    | 0.0015  | < 0.010  | 0.015      | 0.06         | 0.7             | 5             |
| Selenium                     | 1450        | U       | 0.0020    | 0.0049  | < 0.010  | 0.045      | 0.1          | 0.5             | 7             |
| Zinc                         | 1450        | U       | 0.030     | 0.031   | < 0.50   | < 0.50     | 4            | 50              | 200           |
| Chloride                     | 1220        | U       | 37        | 4.5     | 74       | 88         | 800          | 15000           | 25000         |
| Fluoride                     | 1220        | U       | 0.59      | 0.37    | 1.2      | 4.0        | 10           | 150             | 500           |
| Sulphate                     | 1220        | U       | 1500      | 1400    | 3000     | 14000      | 1000         | 20000           | 50000         |
| Total Dissolved Solids       | 1020        | N       | 1500      | 1400    | 3000     | 14000      | 4000         | 60000           | 100000        |
| Phenol Index                 | 1920        | U       | < 0.030   | < 0.030 | < 0.30   | < 0.50     | 1            | -               | -             |
| Dissolved Organic Carbon     | 1610        | U       | 10        | 6.3     | < 50     | 68         | 500          | 800             | 1000          |

| Soild Information           |       |  |  |  |  |  |
|-----------------------------|-------|--|--|--|--|--|
| Dry mass of test portion/kg | 0.175 |  |  |  |  |  |
| Moisture (%)                | 10    |  |  |  |  |  |

| Leachate Test Information           |       |  |  |  |  |  |
|-------------------------------------|-------|--|--|--|--|--|
| Leachant volume 1st extract/l       | 0.330 |  |  |  |  |  |
| Leachant volume 2nd extract/l       | 1.400 |  |  |  |  |  |
| Eluant recovered from 1st extract/l | 0.231 |  |  |  |  |  |



| 1 TOJECL. TO-SUZT AIRIUW     |             |         |           |           |         |            |              |                 |               |
|------------------------------|-------------|---------|-----------|-----------|---------|------------|--------------|-----------------|---------------|
| Chemtest Job No:             | 16-25458    |         |           |           |         |            | Landfill V   | Vaste Acceptant | ce Criteria   |
| Chemtest Sample ID:          | 367621      |         |           |           |         |            |              | Limits          |               |
| Sample Ref:                  | BH13        |         |           |           |         |            |              | Stable, Non-    |               |
| Sample ID:                   |             |         |           |           |         |            |              | reactive        | Hazardous     |
| Top Depth(m):                | 1.0         |         |           |           |         |            | Inert Waste  | hazardous       | Waste         |
| Bottom Depth(m):             |             |         |           |           |         |            | Landfill     | waste in non-   | Landfill      |
| Sampling Date:               | 19-Oct-2016 |         |           |           |         |            |              | hazardous       |               |
| Determinand                  | SOP         | Accred. | Units     |           |         |            |              | Landfill        |               |
| Total Organic Carbon         | 2625        | U       | %         |           |         | 0.46       | 3            | 5               | 6             |
| Loss On Ignition             | 2610        | U       | %         |           |         | 2.7        |              |                 | 10            |
| Total BTEX                   | 2760        | U       | mg/kg     |           |         | < 0.010    | 6            |                 |               |
| Total PCBs (7 Congeners)     | 2815        | U       | mg/kg     |           |         | < 0.10     | 1            |                 |               |
| TPH Total WAC (Mineral Oil)  | 2670        | U       | mg/kg     |           |         | < 10       | 500          |                 | -             |
| Total (Of 17) PAH's          | 2700        | N       | mg/kg     |           |         | < 2.0      | 100          |                 |               |
| рН                           | 2010        | U       |           |           |         | 9.5        |              | >6              |               |
| Acid Neutralisation Capacity | 2015        | N       | mol/kg    |           |         | 0.064      |              | To evaluate     | To evaluate   |
| Eluate Analysis              |             |         | 2:1       | 8:1       | 2:1     | Cumulative | Limit values | for compliance  | leaching test |
|                              |             |         | mg/l      | mg/l      | mg/kg   | mg/kg 10:1 | using BS     | EN 12457-3 at I | /S 10 l/kg    |
| Arsenic                      | 1450        | U       | 0.0091    | 0.015     | < 0.050 | 0.14       | 0.5          | 2               | 25            |
| Barium                       | 1450        | U       | 0.022     | 0.011     | < 0.50  | < 0.50     | 20           | 100             | 300           |
| Cadmium                      | 1450        | U       | < 0.00010 | < 0.00010 | < 0.010 | < 0.010    | 0.04         | 1               | 5             |
| Chromium                     | 1450        | U       | 0.011     | 0.0036    | < 0.050 | < 0.050    | 0.5          | 10              | 70            |
| Copper                       | 1450        | U       | 0.0096    | 0.0046    | < 0.050 | < 0.050    | 2            | 50              | 100           |
| Mercury                      | 1450        | U       | 0.00058   | < 0.00050 | 0.0012  | < 0.0050   | 0.01         | 0.2             | 2             |
| Molybdenum                   | 1450        | U       | 0.013     | 0.0031    | < 0.050 | < 0.050    | 0.5          | 10              | 30            |
| Nickel                       | 1450        | U       | 0.0011    | < 0.0010  | < 0.050 | < 0.050    | 0.4          | 10              | 40            |
| Lead                         | 1450        | U       | 0.0032    | 0.0013    | < 0.010 | 0.016      | 0.5          | 10              | 50            |
| Antimony                     | 1450        | U       | 0.0020    | 0.0012    | < 0.010 | 0.013      | 0.06         | 0.7             | 5             |
| Selenium                     | 1450        | U       | 0.0042    | 0.0015    | < 0.010 | 0.019      | 0.1          | 0.5             | 7             |
| Zinc                         | 1450        | U       | 0.0092    | 0.0028    | < 0.50  | < 0.50     | 4            | 50              | 200           |
| Chloride                     | 1220        | U       | 11        | 2.1       | 22      | 33         | 800          | 15000           | 25000         |
| Fluoride                     | 1220        | U       | 0.39      | 0.23      | < 1.0   | 2.5        | 10           | 150             | 500           |
| Sulphate                     | 1220        | U       | 140       | 28        | 270     | 430        | 1000         | 20000           | 50000         |
| Total Dissolved Solids       | 1020        | N       | 420       | 93        | 840     | 1400       | 4000         | 60000           | 100000        |
| Phenol Index                 | 1920        | U       | < 0.030   | < 0.030   | < 0.30  | < 0.50     | 1            | -               | -             |
| Dissolved Organic Carbon     | 1610        | U       | 10        | 9.2       | < 50    | 93         | 500          | 800             | 1000          |

| Soild Information           |       |  |  |  |  |  |
|-----------------------------|-------|--|--|--|--|--|
| Dry mass of test portion/kg | 0.175 |  |  |  |  |  |
| Moisture (%)                | 11    |  |  |  |  |  |

| Leachate Test Information           |       |  |  |  |  |  |
|-------------------------------------|-------|--|--|--|--|--|
| Leachant volume 1st extract/l       | 0.329 |  |  |  |  |  |
| Leachant volume 2nd extract/l       | 1.400 |  |  |  |  |  |
| Eluant recovered from 1st extract/l | 0.239 |  |  |  |  |  |



| Chemtest Job No:             | 16-25458    |         |           |           |          |            | Landfill W   | aste Acceptano  | ce Criteria   |
|------------------------------|-------------|---------|-----------|-----------|----------|------------|--------------|-----------------|---------------|
| Chemtest Sample ID:          | 367622      |         |           |           |          |            |              | Limits          |               |
| Sample Ref:                  | BH15D       |         |           |           |          |            |              | Stable, Non-    |               |
| Sample ID:                   |             |         |           |           |          |            |              | reactive        | Hazardous     |
| Top Depth(m):                | 0.2         |         |           |           |          |            | Inert Waste  | hazardous       | Waste         |
| Bottom Depth(m):             | •           |         |           |           |          |            | Landfill     | waste in non-   | Landfill      |
| Sampling Date:               | 19-Oct-2016 |         |           |           |          |            |              | hazardous       |               |
| Determinand                  | SOP         | Accred. | Units     |           |          |            |              | Landfill        |               |
| Total Organic Carbon         | 2625        | U       | %         |           |          | 0.52       | 3            | 5               | 6             |
| Loss On Ignition             | 2610        | U       | %         |           |          | 0.95       |              |                 | 10            |
| Total BTEX                   | 2760        | U       | mg/kg     |           |          | < 0.010    | 6            |                 |               |
| Total PCBs (7 Congeners)     | 2815        | U       | mg/kg     |           |          | < 0.10     | 1            |                 |               |
| TPH Total WAC (Mineral Oil)  | 2670        | U       | mg/kg     |           |          | 110        | 500          |                 |               |
| Total (Of 17) PAH's          | 2700        | N       | mg/kg     |           |          | 2.5        | 100          |                 |               |
| рН                           | 2010        | U       |           |           |          | 8.1        |              | >6              |               |
| Acid Neutralisation Capacity | 2015        | N       | mol/kg    |           |          | 0.0090     |              | To evaluate     | To evaluate   |
| Eluate Analysis              |             |         | 2:1       | 8:1       | 2:1      | Cumulative | Limit values | for compliance  | leaching test |
|                              |             |         | mg/l      | mg/l      | mg/kg    | mg/kg 10:1 | using BS     | EN 12457-3 at L | _/S 10 l/kg   |
| Arsenic                      | 1450        | U       | 0.0035    | 0.0025    | < 0.050  | < 0.050    | 0.5          | 2               | 25            |
| Barium                       | 1450        | U       | 0.025     | 0.019     | < 0.50   | < 0.50     | 20           | 100             | 300           |
| Cadmium                      | 1450        | U       | < 0.00010 | < 0.00010 | < 0.010  | < 0.010    | 0.04         | 1               | 5             |
| Chromium                     | 1450        | U       | < 0.0010  | < 0.0010  | < 0.050  | < 0.050    | 0.5          | 10              | 70            |
| Copper                       | 1450        | U       | 0.0053    | 0.0023    | < 0.050  | < 0.050    | 2            | 50              | 100           |
| Mercury                      | 1450        | U       | < 0.00050 | < 0.00050 | < 0.0010 | < 0.0050   | 0.01         | 0.2             | 2             |
| Molybdenum                   | 1450        | U       | 0.019     | 0.0093    | < 0.050  | 0.11       | 0.5          | 10              | 30            |
| Nickel                       | 1450        | U       | 0.0010    | < 0.0010  | < 0.050  | < 0.050    | 0.4          | 10              | 40            |
| Lead                         | 1450        | U       | < 0.0010  | < 0.0010  | < 0.010  | < 0.010    | 0.5          | 10              | 50            |
| Antimony                     | 1450        | U       | 0.012     | 0.0082    | 0.024    | 0.087      | 0.06         | 0.7             | 5             |
| Selenium                     | 1450        | U       | 0.0011    | < 0.0010  | < 0.010  | < 0.010    | 0.1          | 0.5             | 7             |
| Zinc                         | 1450        | U       | 0.023     | 0.0044    | < 0.50   | < 0.50     | 4            | 50              | 200           |
| Chloride                     | 1220        | U       | 13        | 1.7       | 26       | 33         | 800          | 15000           | 25000         |
| Fluoride                     | 1220        | U       | 0.56      | 0.64      | 1.1      | 6.3        | 10           | 150             | 500           |
| Sulphate                     | 1220        | U       | 1200      | 130       | 2300     | 2800       | 1000         | 20000           | 50000         |
| Total Dissolved Solids       | 1020        | N       | 1200      | 240       | 2400     | 3800       | 4000         | 60000           | 100000        |
| Phenol Index                 | 1920        | U       | < 0.030   | < 0.030   | < 0.30   | < 0.50     | 1            | -               | -             |
| Dissolved Organic Carbon     | 1610        | U       | 11        | 7.0       | < 50     | 76         | 500          | 800             | 1000          |

| Soild Information           |       |  |  |  |  |  |
|-----------------------------|-------|--|--|--|--|--|
| Dry mass of test portion/kg | 0.175 |  |  |  |  |  |
| Moisture (%)                | 7.5   |  |  |  |  |  |

| Leachate Test Information           |       |  |  |  |  |  |
|-------------------------------------|-------|--|--|--|--|--|
| Leachant volume 1st extract/l       | 0.336 |  |  |  |  |  |
| Leachant volume 2nd extract/l       | 1.400 |  |  |  |  |  |
| Eluant recovered from 1st extract/l | 0.252 |  |  |  |  |  |



| TTOJECT. TO-SOZT AIRIOW      |             |         |           |           |         |            |              |                 |               |
|------------------------------|-------------|---------|-----------|-----------|---------|------------|--------------|-----------------|---------------|
| Chemtest Job No:             | 16-25458    |         |           |           |         |            | Landfill W   | /aste Acceptand | ce Criteria   |
| Chemtest Sample ID:          | 367623      |         |           |           |         |            |              | Limits          |               |
| Sample Ref:                  | BH15D       |         |           |           |         |            |              | Stable, Non-    |               |
| Sample ID:                   |             |         |           |           |         |            |              | reactive        | Hazardous     |
| Top Depth(m):                | 1.6         |         |           |           |         |            | Inert Waste  | hazardous       | Waste         |
| Bottom Depth(m):             |             |         |           |           |         |            | Landfill     | waste in non-   | Landfill      |
| Sampling Date:               | 19-Oct-2016 |         |           |           |         |            |              | hazardous       |               |
| Determinand                  | SOP         | Accred. | Units     |           |         |            |              | Landfill        |               |
| Total Organic Carbon         | 2625        | U       | %         |           |         | 0.44       | 3            | 5               | 6             |
| Loss On Ignition             | 2610        | U       | %         |           |         | 1.3        |              |                 | 10            |
| Total BTEX                   | 2760        | U       | mg/kg     |           |         | < 0.010    | 6            |                 |               |
| Total PCBs (7 Congeners)     | 2815        | U       | mg/kg     |           |         | < 0.10     | 1            |                 |               |
| TPH Total WAC (Mineral Oil)  | 2670        | U       | mg/kg     |           |         | 50         | 500          |                 |               |
| Total (Of 17) PAH's          | 2700        | N       | mg/kg     |           |         | < 2.0      | 100          |                 |               |
| рН                           | 2010        | U       |           |           |         | 10.8       |              | >6              |               |
| Acid Neutralisation Capacity | 2015        | N       | mol/kg    |           |         | 0.018      |              | To evaluate     | To evaluate   |
| Eluate Analysis              |             |         | 2:1       | 8:1       | 2:1     | Cumulative | Limit values | for compliance  | leaching test |
|                              |             |         | mg/l      | mg/l      | mg/kg   | mg/kg 10:1 | using BS     | EN 12457-3 at L | /S 10 l/kg    |
| Arsenic                      | 1450        | U       | 0.0030    | 0.0025    | < 0.050 | < 0.050    | 0.5          | 2               | 25            |
| Barium                       | 1450        | U       | 0.087     | 0.030     | < 0.50  | < 0.50     | 20           | 100             | 300           |
| Cadmium                      | 1450        | U       | < 0.00010 | < 0.00010 | < 0.010 | < 0.010    | 0.04         | 1               | 5             |
| Chromium                     | 1450        | U       | 0.0034    | 0.0036    | < 0.050 | < 0.050    | 0.5          | 10              | 70            |
| Copper                       | 1450        | U       | 0.025     | 0.0078    | < 0.050 | < 0.050    | 2            | 50              | 100           |
| Mercury                      | 1450        | U       | 0.00096   | 0.00084   | 0.0019  | 0.0086     | 0.01         | 0.2             | 2             |
| Molybdenum                   | 1450        | U       | 0.061     | 0.019     | 0.12    | 0.25       | 0.5          | 10              | 30            |
| Nickel                       | 1450        | U       | 0.0023    | < 0.0010  | < 0.050 | < 0.050    | 0.4          | 10              | 40            |
| Lead                         | 1450        | U       | 0.0019    | < 0.0010  | < 0.010 | < 0.010    | 0.5          | 10              | 50            |
| Antimony                     | 1450        | U       | < 0.0010  | < 0.0010  | < 0.010 | < 0.010    | 0.06         | 0.7             | 5             |
| Selenium                     | 1450        | U       | 0.0029    | 0.0011    | < 0.010 | 0.014      | 0.1          | 0.5             | 7             |
| Zinc                         | 1450        | U       | 0.0017    | < 0.0010  | < 0.50  | < 0.50     | 4            | 50              | 200           |
| Chloride                     | 1220        | U       | 240       | 41        | 480     | 700        | 800          | 15000           | 25000         |
| Fluoride                     | 1220        | U       | 0.70      | 0.19      | 1.4     | 2.6        | 10           | 150             | 500           |
| Sulphate                     | 1220        | U       | 23        | 29        | 46      | 280        | 1000         | 20000           | 50000         |
| Total Dissolved Solids       | 1020        | N       | 1200      | 620       | 2400    | 7000       | 4000         | 60000           | 100000        |
| Phenol Index                 | 1920        | U       | < 0.030   | < 0.030   | < 0.30  | < 0.50     | 1            | -               | -             |
| Dissolved Organic Carbon     | 1610        | U       | 7.6       | 6.2       | < 50    | 64         | 500          | 800             | 1000          |

| Soild Information           |       |
|-----------------------------|-------|
| Dry mass of test portion/kg | 0.175 |
| Moisture (%)                | 6.3   |

| Leachate Test Information           |       |
|-------------------------------------|-------|
| Leachant volume 1st extract/l       | 0.338 |
| Leachant volume 2nd extract/l       | 1.400 |
| Eluant recovered from 1st extract/l | 0.253 |



| 16 25 45 9 |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l andfill \A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | laata Aaaantaa    | o Critorio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lanatiii V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                 | e Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BH16       |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                 | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.5        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Hazardous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.5        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Accred.                                                                                                                                      | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Landfill          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | U                                                                                                                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | U                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | U                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | N                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2010       | U                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >6                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2015       | N                                                                                                                                            | mol/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To evaluate       | To evaluate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |                                                                                                                                              | 2:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cumulative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for compliance    | leaching test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                                                                                                              | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | using BS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EN 12457-3 at L   | _/S 10 l/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1450       | U                                                                                                                                            | 0.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1450       | U                                                                                                                                            | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100               | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1450       | U                                                                                                                                            | < 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1450       | U                                                                                                                                            | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1450       | U                                                                                                                                            | 0.0047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1450       | U                                                                                                                                            | 0.00098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1450       | U                                                                                                                                            | 0.0072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1450       | U                                                                                                                                            | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1450       | U                                                                                                                                            | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1450       | U                                                                                                                                            | 0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1450       | U                                                                                                                                            | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1450       | U                                                                                                                                            | 0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1220       | U                                                                                                                                            | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15000             | 25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1220       | U                                                                                                                                            | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150               | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1220       | U                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20000             | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1020       | N                                                                                                                                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60000             | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1920       | U                                                                                                                                            | < 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1610       | U                                                                                                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 800               | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 1450<br>1450<br>1450<br>1450<br>1450<br>1450<br>1450<br>1450<br>1450<br>1450<br>1450<br>1450<br>1220<br>1220<br>1220<br>1220<br>1020<br>1920 | 367624 BH16  0.5  19-Oct-2016  SOP Accred.  2625 U 2610 U 2760 U 2815 U 2670 U 2700 N 2010 U 2015 N  1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U 1450 U | 367624 BH16  0.5  19-Oct-2016  SOP Accred. Units  2625 U %  2610 U %  2760 U mg/kg  2815 U mg/kg  2670 U mg/kg  2700 N mg/kg  2010 U  2015 N mol/kg  2:1 mg/l  1450 U 0.0027  1450 U 0.0031  1450 U 0.0047  1450 U 0.0047  1450 U 0.00098  1450 U 0.00072  1450 U 0.00098  1450 U 0.00072  1450 U 0.00010  1450 U 0.0017   367624 BH16  0.5  19-Oct-2016  SOP Accred. Units  2625 U % 2610 U mg/kg 2760 U mg/kg 2815 U mg/kg 2670 U mg/kg 2010 U mg/kg 2010 U mg/kg 2015 N mol/kg  1450 U 0.0027 0.0054 1450 U 0.0031 0.0028 1450 U 0.0031 0.0028 1450 U 0.0047 0.014 1450 U 0.00072 0.0054 1450 U 0.00070 0.0010 1450 U 0.00070 0.0010 1450 U 0.00070 0.0028 1450 U 0.00070 0.0024 1450 U 0.00070 0.0024 1450 U 0.00070 0.0024 1450 U 0.00070 0.0010 1450 U 0.0017 0.0016 1450 U 0.0017 0.0012 1450 U 0.0017 0.0012 1450 U 0.0017 0.0012 1450 U 0.0017 0.0017 1450 U 0.0017 0.0017 1450 U 0.0017 0.0017 1450 U 0.0017 0.0010 1450 U 0.0017 0.0010 1450 U 0.0017 0.0010 1450 U 0.0017 0.0012 | 367624 BH16  0.5  19-Oct-2016  SOP Accred. Units  2625 U %  2610 U mg/kg  2815 U mg/kg  2670 U mg/kg  2700 N mg/kg  2010 U  2015 N mol/kg  1450 U 0.0027 0.0054 < 0.050  1450 U 0.0018 0.015 < 0.50  1450 U 0.0031 0.0028 < 0.050  1450 U 0.00047 0.014 < 0.050  1450 U 0.00098 < 0.00050 0.0019  1450 U 0.00098 < 0.00050 0.0019  1450 U 0.00098 < 0.00050 0.0019  1450 U 0.00072 0.0054 < 0.050  1450 U 0.00010 < 0.0010 < 0.0010  1450 U 0.00010 < 0.0010 < 0.0010  1450 U 0.00010 < 0.0010 < 0.0019  1450 U 0.00072 0.0024 < 0.050  1450 U 0.00010 < 0.0010 < 0.0010  1450 U 0.00010 < 0.0010 < 0.050  1450 U 0.0017 0.0012 < 0.010  1450 U 0.0017 0.0012 < 0.010  1450 U 0.0017 0.0017 < 0.050  1450 U 0.0017 0.0017 < 0.050  1450 U 0.0017 0.0017 < 0.50  1220 U 7.4 2.8 15  1220 U 0.32 0.19 < 1.0  1220 N 100 41 200  1920 U < 0.030 < 0.030 | 367624 BH16  0.5  19-Oct-2016  SOP Accred. Units  2625 U % 26210 U % 2760 U mg/kg 2760 U mg/kg 27700 N mg/kg 2700 N mg/kg 2010 U 2015 N mol/kg 211 8:1 2:1 Cumulative mg/l mg/l mg/kg 10:1  1450 U 0.0027 0.0054 < 0.050 < 0.050 1450 U 0.0031 0.0028 < 0.050 1450 U 0.0031 0.0028 < 0.050 1450 U 0.0031 0.0028 < 0.050 1450 U 0.00098 < 0.0050 1450 U 0.00098 < 0.0050 < 0.050 1450 U 0.00098 < 0.0050 < 0.050 1450 U 0.00010 < 0.0010 < 0.0010 < 0.0010 1450 U 0.0007 0.0054 < 0.050 < 0.050 1450 U 0.0031 0.0028 < 0.050 < 0.050 1450 U 0.00010 < 0.00010 < 0.0010 < 0.0050 1450 U 0.0007 0.0024 < 0.050 < 0.050 1450 U 0.00098 < 0.0050 < 0.050 1450 U 0.00098 < 0.00050 < 0.050 1450 U 0.00072 0.0024 < 0.050 < 0.050 1450 U 0.00072 0.0024 < 0.050 < 0.050 1450 U 0.00072 0.0024 < 0.050 < 0.050 1450 U 0.00070 0.0010 < 0.0010 < 0.050 1450 U 0.00070 0.0010 < 0.0010 < 0.050 1450 U 0.00070 0.0014 < 0.050 < 0.050 1450 U 0.00010 < 0.0010 < 0.0050 < 0.050 1450 U 0.00010 < 0.0010 < 0.0010 < 0.050 1450 U 0.00010 < 0.0010 < 0.0050 < 0.050 1450 U 0.0010 < 0.0010 < 0.0010 < 0.050 < 0.050 1450 U 0.00010 < 0.0010 < 0.0010 < 0.050 < 0.050 1450 U 0.0017 0.0012 < 0.010 0.013 1450 U 0.0017 0.0012 < 0.010 0.013 1450 U 0.0017 0.0017 < 0.0010 < 0.050 < 0.050 1450 U 0.0017 0.0017 < 0.050 < 0.050 1450 U 0.0017 0.0017 < 0.050 < 0.050 1450 U 0.0017 0.0017 < 0.050 < 0.050 1450 U 0.0017 0.0017 < 0.0010 < 0.0010 < 0.050 1450 U 0.0017 0.0012 < 0.010 0.011 1450 U 0.0017 0.0017 < 0.0010 < 0.050 < 0.050 1450 U 0.0017 0.0012 < 0.0010 < 0.050 1450 U 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.00 | 19-Oct-2016   SOP | Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe   Sofe |

| Soild Information           |       |
|-----------------------------|-------|
| Dry mass of test portion/kg | 0.175 |
| Moisture (%)                | 12    |

| Leachate Test Information           |       |
|-------------------------------------|-------|
| Leachant volume 1st extract/l       | 0.325 |
| Leachant volume 2nd extract/l       | 1.400 |
| Eluant recovered from 1st extract/l | 0.262 |



| Project. 16-3027 Arkiow      |             |         |           |           |          |            |              |                 |               |
|------------------------------|-------------|---------|-----------|-----------|----------|------------|--------------|-----------------|---------------|
| Chemtest Job No:             | 16-25458    |         |           |           |          |            | Landfill W   | /aste Acceptand | ce Criteria   |
| Chemtest Sample ID:          | 367625      |         |           |           |          |            |              | Limits          |               |
| Sample Ref:                  | BH14        |         |           |           |          |            |              | Stable, Non-    |               |
| Sample ID:                   |             |         |           |           |          |            |              | reactive        | Hazardous     |
| Top Depth(m):                | 1.0         |         |           |           |          |            | Inert Waste  | hazardous       | Waste         |
| Bottom Depth(m):             |             |         |           |           |          |            | Landfill     | waste in non-   | Landfill      |
| Sampling Date:               | 19-Oct-2016 |         | _         |           |          |            |              | hazardous       |               |
| Determinand                  | SOP         | Accred. | Units     |           |          |            |              | Landfill        |               |
| Total Organic Carbon         | 2625        | U       | %         |           |          | 0.57       | 3            | 5               | 6             |
| Loss On Ignition             | 2610        | U       | %         |           |          | 1.9        |              |                 | 10            |
| Total BTEX                   | 2760        | U       | mg/kg     |           |          | < 0.010    | 6            |                 |               |
| Total PCBs (7 Congeners)     | 2815        | U       | mg/kg     |           |          | < 0.10     | 1            |                 |               |
| TPH Total WAC (Mineral Oil)  | 2670        | U       | mg/kg     |           |          | 190        | 500          |                 |               |
| Total (Of 17) PAH's          | 2700        | N       | mg/kg     |           |          | 4.8        | 100          |                 |               |
| рН                           | 2010        | U       |           |           |          | 4.8        |              | >6              |               |
| Acid Neutralisation Capacity | 2015        | N       | mol/kg    |           |          | < 0.0020   |              | To evaluate     | To evaluate   |
| Eluate Analysis              |             |         | 2:1       | 8:1       | 2:1      | Cumulative | Limit values | for compliance  | leaching test |
|                              |             |         | mg/l      | mg/l      | mg/kg    | mg/kg 10:1 | using BS     | EN 12457-3 at L | _/S 10 l/kg   |
| Arsenic                      | 1450        | U       | 0.0044    | 0.0020    | < 0.050  | < 0.050    | 0.5          | 2               | 25            |
| Barium                       | 1450        | U       | 0.024     | 0.030     | < 0.50   | < 0.50     | 20           | 100             | 300           |
| Cadmium                      | 1450        | U       | 0.052     | 0.065     | 0.10     | 0.63       | 0.04         | 1               | 5             |
| Chromium                     | 1450        | U       | 0.0028    | 0.0019    | < 0.050  | < 0.050    | 0.5          | 10              | 70            |
| Copper                       | 1450        | U       | 0.59      | 0.74      | 1.2      | 0.86       | 2            | 50              | 100           |
| Mercury                      | 1450        | U       | < 0.00050 | < 0.00050 | < 0.0010 | < 0.0050   | 0.01         | 0.2             | 2             |
| Molybdenum                   | 1450        | U       | 0.0010    | < 0.0010  | < 0.050  | < 0.050    | 0.5          | 10              | 30            |
| Nickel                       | 1450        | U       | 0.053     | 0.068     | 0.11     | 0.66       | 0.4          | 10              | 40            |
| Lead                         | 1450        | U       | 0.081     | 0.089     | 0.16     | 0.88       | 0.5          | 10              | 50            |
| Antimony                     | 1450        | U       | < 0.0010  | < 0.0010  | < 0.010  | < 0.010    | 0.06         | 0.7             | 5             |
| Selenium                     | 1450        | U       | < 0.0010  | 0.0012    | < 0.010  | 0.010      | 0.1          | 0.5             | 7             |
| Zinc                         | 1450        | U       | 16        | 21        | 32       | 200        | 4            | 50              | 200           |
| Chloride                     | 1220        | U       | 14        | 2.2       | 28       | 39         | 800          | 15000           | 25000         |
| Fluoride                     | 1220        | U       | 2.4       | 0.85      | 4.8      | 11         | 10           | 150             | 500           |
| Sulphate                     | 1220        | U       | 2100      | 1100      | 4300     | 13000      | 1000         | 20000           | 50000         |
| Total Dissolved Solids       | 1020        | N       | 1900      | 1100      | 3800     | 12000      | 4000         | 60000           | 100000        |
| Phenol Index                 | 1920        | U       | < 0.030   | < 0.030   | < 0.30   | < 0.50     | 1            | -               | -             |
| Dissolved Organic Carbon     | 1610        | U       | 10        | 5.9       | < 50     | 65         | 500          | 800             | 1000          |

| Soild Information           |       |
|-----------------------------|-------|
| Dry mass of test portion/kg | 0.175 |
| Moisture (%)                | 9.9   |

| Leachate Test Information           |       |
|-------------------------------------|-------|
| Leachant volume 1st extract/l       | 0.331 |
| Leachant volume 2nd extract/l       | 1.400 |
| Eluant recovered from 1st extract/l | 0.254 |



## **Test Methods**

| SOP  | The right chemistry to deliver re<br><b>Title</b>                         | Accreditation                           | Parameters included                                                                                                                                                                                                                                          | Method summary                                                                                                                                             |
|------|---------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Electrical Conductivity and<br>Total Dissolved Solids (TDS) in<br>Waters  | UKAS accredited                         | Electrical Conductivity and Total Dissolved Solids (TDS) in Waters                                                                                                                                                                                           | Electrical Conductivity and Total Dissolved Solids in Waters                                                                                               |
| 1220 | Anions, Alkalinity & Ammonium in Waters                                   | UKAS accredited                         | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                                                                                       | Automated colorimetric analysis using<br>'Aquakem 600' Discrete Analyser.                                                                                  |
| 1450 | Metals in Waters by ICP-MS                                                | UKAS accredited                         | Metals, including: Antimony; Arsenic; Barium;<br>Beryllium; Boron; Cadmium; Chromium;<br>Cobalt; Copper; Lead; Manganese; Mercury;<br>Molybdenum; Nickel; Selenium; Tin; Vanadium;<br>Zinc                                                                   | Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).                                           |
| 1610 | Total/Dissolved Organic<br>Carbon in Waters                               | UKAS accredited                         | Organic Carbon                                                                                                                                                                                                                                               | TOC Analyser using Catalytic Oxidation                                                                                                                     |
| 1920 | Phenols in Waters by HPLC                                                 | UKAS accredited                         | Phenolic compounds including: Phenol,<br>Cresols, Xylenols, Trimethylphenols Note:<br>Chlorophenols are excluded.                                                                                                                                            | Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.                                                            |
| 2010 | pH Value of Soils                                                         | UKAS<br>accreditedMCERTS<br>accredited  | рН                                                                                                                                                                                                                                                           | pH Meter                                                                                                                                                   |
| 2015 | Acid Neutralisation Capacity                                              |                                         | Acid Reserve                                                                                                                                                                                                                                                 | Titration                                                                                                                                                  |
| 2030 | Moisture and Stone Content of Soils(Requirement of MCERTS)                |                                         | Moisture content                                                                                                                                                                                                                                             | Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.                                                       |
| 2610 | Loss on Ignition                                                          | UKAS<br>accreditedMCERTS<br>accredited  | loss on ignition (LOI)                                                                                                                                                                                                                                       | Determination of the proportion by mass that is lost from a soil by ignition at 550°C.                                                                     |
| 2625 | Total Organic Carbon in Soils                                             | UKAS<br>accreditedMCERTS<br>accredited  | Total organic Carbon (TOC)                                                                                                                                                                                                                                   | Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.                                                                 |
| 2670 | Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID                     | UKAS<br>accreditedMCERTS<br>accredited* | TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40                                                                                                                                                                               | Dichloromethane extraction / GC-FID                                                                                                                        |
|      | Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>in Soil by GC-FID | UKAS<br>accreditedMCERTS<br>accredited  | Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene | Dichloromethane extraction / GC-FID                                                                                                                        |
| 2760 | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS       | UKAS<br>accreditedMCERTS<br>accredited* | Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule                                                                                                                         | Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds. |
|      | Polychlorinated Biphenyls<br>(PCB) ICES7Congeners in<br>Soils by GC-MS    | UKAS<br>accreditedMCERTS<br>accredited  | ICES7 PCB congeners                                                                                                                                                                                                                                          | Acetone/Hexane extraction / GC-MS                                                                                                                          |



## **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

## **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>





Chemtest Ltd.
Depot Road
Newmarket
CB8 0AL
Tel: 01638 606070

Email: info@chemtest.co.uk

# **Final Report**

**Report No.:** 16-25460-1

Initial Date of Issue: 26-Oct-2016

Client Causeway Geotech Ltd

Client Address: 8 Drumahiskey Road

Balnamore Ballymoney County Antrim BT53 7QL

Contact(s): Andy Garne

Colm Hurley

Darren O'Mahony Matthew Gilbert Neil Haggan Paul McNamara Stephen Franey Stephen Watson Brian Mooney Lucy Peaker Ian Holley Mark Nyhan Paul Dunlop

**Project** 16-5027 Arklow

Quotation No.: Date Received: 20-Oct-2016

Order No.: Date Instructed: 20-Oct-2016

No. of Samples: 6

Turnaround (Wkdays): 5 Results Due: 26-Oct-2016

Date Approved: 26-Oct-2016

Approved By:

**Details:** Glynn Harvey, Laboratory Manager



| Client: Causeway Geotech Ltd        |         |        | mtest J  |          | 16-25460    | 16-25460    | 16-25460    | 16-25460    | 16-25460    | 16-25460    |
|-------------------------------------|---------|--------|----------|----------|-------------|-------------|-------------|-------------|-------------|-------------|
| Quotation No.:                      |         | Chemte | st Sam   | ple ID.: | 367632      | 367633      | 367634      | 367635      | 367636      | 367637      |
| Order No.:                          |         | Clie   | nt Locat | -        | BH12        | BH13        | BH15D       | BH15D       | BH16        | BH14        |
|                                     |         |        | Sampl    | е Туре:  | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        | SOIL        |
|                                     |         |        | Top De   | oth (m): | 1.0         | 1.0         | 0.2         | 1.6         | 0.5         | 1.0         |
|                                     |         |        | Date Sa  | ampled:  | 19-Oct-2016 | 19-Oct-2016 | 19-Oct-2016 | 19-Oct-2016 | 19-Oct-2016 | 19-Oct-2016 |
| Determinand                         | Accred. | SOP    | Units    | LOD      |             |             |             |             |             |             |
| Moisture                            | N       | 2030   | %        | 0.020    | 15          | 7.7         | 6.5         | 6.4         | 12          | 9.5         |
| рН                                  | U       | 2010   |          | N/A      | 7.5         | 8.9         | 8.2         | 10.8        | 9.0         | 5.0         |
| Sulphate (2:1 Water Soluble) as SO4 | U       | 2120   | g/l      | 0.010    | 1.8         | 0.87        | 0.42        | 0.58        | < 0.010     | 2.5         |
| Arsenic                             | U       | 2450   | mg/kg    | 1.0      | 230         | 25          | 80          | 110         | 18          | 500         |
| Cadmium                             | U       | 2450   | mg/kg    | 0.10     | 1.2         | 0.20        | 0.33        | 0.54        | 0.37        | 1.4         |
| Chromium                            | U       | 2450   | mg/kg    | 1.0      | 15          | 28          | 17          | 19          | 8.2         | 13          |
| Copper                              | U       | 2450   | mg/kg    | 0.50     | 530         | 51          | 300         | 250         | 87          | 710         |
| Mercury                             | U       | 2450   | mg/kg    | 0.10     | 1.7         | 0.12        | 0.11        | 0.10        | < 0.10      | 0.68        |
| Nickel                              | U       | 2450   | mg/kg    | 0.50     | 16          | 33          | 15          | 18          | 8.4         | 12          |
| Lead                                | U       | 2450   | mg/kg    | 0.50     | 900         | 54          | 380         | 420         | 66          | 1600        |
| Selenium                            | U       | 2450   | mg/kg    | 0.20     | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20      |
| Zinc                                | U       | 2450   | mg/kg    | 0.50     | 570         | 94          | 240         | 230         | 170         | 680         |
| Mineral Oil                         | N       | 2670   | mg/kg    | 10       | < 10        | < 10        | < 10        | < 10        | < 10        | < 10        |
| TPH >C6-C10                         | N       | 2670   | mg/kg    | 1.0      | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       | < 1.0       |
| TPH >C10-C21                        | N       | 2670   | mg/kg    | 1.0      | 21          | < 1.0       | 9.9         | 6.5         | < 1.0       | 36          |
| TPH >C21-C40                        | N       | 2670   | mg/kg    | 1.0      | 34          | < 1.0       | 18          | 12          | < 1.0       | 20          |
| Total TPH >C6-C40                   | U       | 2670   | mg/kg    | 10       | 54          | < 10        | 28          | 19          | < 10        | 56          |
| Naphthalene                         | U       | 2700   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | 0.29        |
| Acenaphthylene                      | U       | 2700   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | 0.47        |
| Acenaphthene                        | U       | 2700   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | 1.1         |
| Fluorene                            | U       | 2700   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | 1.1         |
| Phenanthrene                        | U       | 2700   | mg/kg    | 0.10     | 2.5         | 0.28        | < 0.10      | 0.86        | < 0.10      | 5.0         |
| Anthracene                          | U       | 2700   | mg/kg    | 0.10     | 0.80        | < 0.10      | < 0.10      | 0.49        | < 0.10      | 1.4         |
| Fluoranthene                        | U       | 2700   | mg/kg    | 0.10     | 7.1         | 0.35        | 0.39        | 2.9         | 0.43        | 4.4         |
| Pyrene                              | U       | 2700   | mg/kg    | 0.10     | 6.9         | 0.35        | 0.32        | 2.6         | 0.50        | 3.7         |
| Benzo[a]anthracene                  | U       | 2700   | mg/kg    | 0.10     | 3.4         | < 0.10      | < 0.10      | 1.9         | < 0.10      | 1.3         |
| Chrysene                            | U       | 2700   | mg/kg    | 0.10     | 4.7         | < 0.10      | < 0.10      | 2.3         | < 0.10      | 1.7         |
| Benzo[b]fluoranthene                | U       | 2700   | mg/kg    | 0.10     | 4.5         | < 0.10      | < 0.10      | 2.1         | < 0.10      | 1.5         |
| Benzo[k]fluoranthene                | Ü       | 2700   | mg/kg    | 0.10     | 2.3         | < 0.10      | < 0.10      | 1.1         | < 0.10      | 0.82        |
| Benzo[a]pyrene                      | Ü       | 2700   | mg/kg    | 0.10     | 2.5         | < 0.10      | < 0.10      | 1.3         | < 0.10      | 0.96        |
| Indeno(1,2,3-c,d)Pyrene             | Ü       | 2700   | mg/kg    | 0.10     | 1.6         | < 0.10      | < 0.10      | 0.53        | < 0.10      | 0.53        |
| Dibenz(a,h)Anthracene               | Ü       | 2700   | mg/kg    | 0.10     | 0.27        | < 0.10      | < 0.10      | 0.12        | < 0.10      | < 0.10      |
| Benzo[g,h,i]perylene                | Ü       | 2700   | mg/kg    | 0.10     | 1.6         | < 0.10      | < 0.10      | 0.68        | < 0.10      | 0.61        |
| Coronene                            | N       | 2700   | mg/kg    | 0.10     | < 0.10      | < 0.10      | < 0.10      | < 0.10      | < 0.10      | 6.6         |
| Total Of 17 PAH's                   | N       | -      | mg/kg    | 2.0      | 38          | < 2.0       | < 2.0       | 17          | < 2.0       | 32          |



## **Report Information**

#### Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
  - < "less than"
  - > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

## **Sample Deviation Codes**

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container

#### **Sample Retention and Disposal**

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>